December  2011, 31(4): 1411-1425. doi: 10.3934/dcds.2011.31.1411

Estimates of the derivatives of minimizers of a special class of variational integrals

1. 

Dipartimento di Matematica, Università di Catania, Università di Catania, Viale A. Doria, 6, 95125 Catania, Italy

2. 

Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan

Received  June 2009 Revised  September 2010 Published  September 2011

The note concerns on some estimates in Morrey Spaces for the derivatives of local minimizers of variational integrals of the form $$\int_\Omega F (x,u,Du) dx $$ where the integrand has the following special form $$ F(x,u,Du)\, =\, A(x,u, g^{\alpha\beta}(x) h_{ij}(u) \frac{\partial u^i}{\partial x^\alpha} \frac{\partial u^i }{\partial x^\beta}), $$ where $(g^{\alpha\beta})$ and $(h_{ij})$ symmetric positive definite matrices. We are not assuming the continuity of $A$ and $g$ with respect to $x$. We suppose that $A(\cdot, u,t)/(1+t)$ and $g(\cdot)$ are in the class $L^\infty\cap VMO$.
Citation: Maria Alessandra Ragusa, Atsushi Tachikawa. Estimates of the derivatives of minimizers of a special class of variational integrals. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1411-1425. doi: 10.3934/dcds.2011.31.1411
References:
[1]

E. Acerbi and N. Fusco, Regularity for minimizers of nonquadratic functionals: The case $1J. Math. Anal. Appl., 140 (1989), 115. Google Scholar

[2]

E. Acerbi and G. Mingione, Gradient estimates for a class of parabolic systems,, Duke Math. J., 136 (2007), 285. doi: 10.1215/S0012-7094-07-13623-8. Google Scholar

[3]

L. Caffarelli, Elliptic second order equations,, Rend. Sem. Mat. Fis. Milano, 58 (1988), 253. doi: 10.1007/BF02925245. Google Scholar

[4]

L. Caffarelli, Interior a priori estimates for solutions of fully non linear equations,, Ann. of Math., 130 (1989), 189. doi: 10.2307/1971480. Google Scholar

[5]

S. Campanato, Equazioni ellittiche del $II$ ordine e spazi $\mathcalL^{2,\lambda},$, Ann. Mat. Pura Appl., 69 (1965), 321. doi: 10.1007/BF02414377. Google Scholar

[6]

S. Campanato, A maximum principle for non-linear elliptic systems: Boundary fundamental estimates,, Adv. Math., 66 (1987), 291. doi: 10.1016/0001-8708(87)90037-5. Google Scholar

[7]

S. Campanato, Elliptic systems with non-linearity $q$ greater or equal $2. $Regularity of the solution of the Dirichlet problem,, Ann. Mat. Pura Appl., 147 (1987), 117. doi: 10.1007/BF01762414. Google Scholar

[8]

F. Chiarenza, M. Frasca and P. Longo, Interior $W^{2,p}$ estimates for non divergence elliptic equations with discontinuous coefficients,, Ric. di Mat., XL (1991), 149. Google Scholar

[9]

E. Di Benedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic vequations,, Nonlinear Anal., 7 (1983), 827. doi: 10.1016/0362-546X(83)90061-5. Google Scholar

[10]

J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds,, Amer. J. Math., 86 (1964), 253. doi: 10.2307/2373037. Google Scholar

[11]

M. Fuchs, Everywhere regularity theorems for mapping which minimize $p$-energy,, Comment. Math. Univ. Carolin., 28 (1987), 673. Google Scholar

[12]

M. Fuchs, $p$-harmonic obstacle problems. I. Partial regularity theory,, Ann. Mat. Pura Appl. (4), 156 (1990), 127. doi: 10.1007/BF01766976. Google Scholar

[13]

N. Fusco and J. Hutchinson, Partial regularity for minimisers of certain functionals having nonquadratic growth,, Ann. Mat. Pura Appl., 155 (1989), 1. doi: 10.1007/BF01765932. Google Scholar

[14]

M. Giaquinta, "Introduction to Regularity Theory for Nonlinear Elliptic Systems,", Lectures in Mathematics, (1993). Google Scholar

[15]

M. Giaquinta and E. Giusti, Partial regularity for the solution to nonlinear parabolic systems,, Ann. Mat. Pura Appl., 47 (1973), 253. Google Scholar

[16]

M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals,, Acta Math., 148 (1982), 31. doi: 10.1007/BF02392725. Google Scholar

[17]

M. Giaquinta and E. Giusti, Differentiability of minima of non-differentiable functionals,, Inv. Math., 72 (1983), 285. doi: 10.1007/BF01389324. Google Scholar

[18]

M. Giaquinta and E. Giusti, The singular set of the minima of certain quadratic functionals,, Ann. Sc. Norm. Sup. Pisa, 9 (1984), 45. Google Scholar

[19]

M. Giaquinta and P. A. Ivert, Partial regularity for minima of variational integrals,, Ark. Mat., 25 (1987), 221. doi: 10.1007/BF02384445. Google Scholar

[20]

M. Giaquinta and G. Modica, Regularity results for some classes of higher order non linear elliptic systems,, J. Reine Angew. Math., 311/312 (1979), 145. Google Scholar

[21]

M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals,, Ann. Inst. H. Poincaré, 3 (1986), 185. Google Scholar

[22]

M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals,, Manuscripta Math., 57 (1986), 55. doi: 10.1007/BF01172492. Google Scholar

[23]

E. Giusti, Regolarita' parziale delle soluzioni deboli di una classe di sistemi ellittici quasi lineari di ordine arbitrario,, Ann. Sc. Norm. Sup. Pisa, 23 (1969), 115. Google Scholar

[24]

E. Giusti, "Direct Method in the Calculus of Variations,", World Scientific, (2003). Google Scholar

[25]

E. Giusti and M. Miranda, Sulla regolarita' delle soluzioni deboli di una classe di sistemi ellittici quasilineari,, Arch. Rat. Mech. Anal., 31 (1968), 173. doi: 10.1007/BF00282679. Google Scholar

[26]

R. Hardt and F.-H. Lin, Mappings minimizing the $L^p$ norm of the gradient,, Comm. Pure Appl. Math., 40 (1987), 555. doi: 10.1002/cpa.3160400503. Google Scholar

[27]

F. John and L. Nirenberg, On functions of bounded mean oscillation,, Comm. Pure Appl. Math., 14 (1961), 415. doi: 10.1002/cpa.3160140317. Google Scholar

[28]

J. Kinnunen and S. Zhou, A local estimate for nonlinear equations with discontinuous coefficients,, Comm. Partial Differential Equations, 24 (1999), 2043. Google Scholar

[29]

J. Kristensen and G. Mingione, The singular set of minima of integral functionals,, Arch. Ration. Mech. Anal., 180 (2006), 331. doi: 10.1007/s00205-005-0402-5. Google Scholar

[30]

J. J. Manfredi, Regularity for minima of functionals with $p$-growth,, J. Differential Equations, 76 (1988), 203. Google Scholar

[31]

G. Mingione, Singularities of minima: A walk on the wild side of the calculus of variations,, J. Global Optim., 40 (2008), 209. doi: 10.1007/s10898-007-9226-1. Google Scholar

[32]

C. B. Morrey Jr., Partial regularity results for nonlinear elliptic systems,, Journ. Math. and Mech., 17 (): 649. Google Scholar

[33]

M. A. Ragusa and A. Tachikawa, "Interior Estimates in Campanato Spaces Related to Quadratic Functionals,", Proceedings of Research Institute of Mathematical Sciences, (2004), 54. Google Scholar

[34]

M. A. Ragusa and A. Tachikawa, Regularity of the minimizers of some variational integrals with discontinuity,, Z. Anal. Anwend., 27 (2008), 469. doi: 10.4171/ZAA/1366. Google Scholar

[35]

D. Sarason, On functions of vanishing mean oscillation,, Trans. Amer. Math. Soc., 207 (1975), 391. doi: 10.1090/S0002-9947-1975-0377518-3. Google Scholar

[36]

L. M. Sibner and R. B. Sibner, A non-linear Hodge de Rham theorem,, Acta Math., 125 (1970), 57. doi: 10.1007/BF02392330. Google Scholar

[37]

P. Tolksdorf, Everywhere-regularity for some quasilinear systems with a lack of ellipticity,, Ann. Mat. Pura Appl., 134 (1983), 241. doi: 10.1007/BF01773507. Google Scholar

[38]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Differential Equations, 51 (1984), 126. Google Scholar

[39]

K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems,, Acta Math., 138 (1977), 219. doi: 10.1007/BF02392316. Google Scholar

show all references

References:
[1]

E. Acerbi and N. Fusco, Regularity for minimizers of nonquadratic functionals: The case $1J. Math. Anal. Appl., 140 (1989), 115. Google Scholar

[2]

E. Acerbi and G. Mingione, Gradient estimates for a class of parabolic systems,, Duke Math. J., 136 (2007), 285. doi: 10.1215/S0012-7094-07-13623-8. Google Scholar

[3]

L. Caffarelli, Elliptic second order equations,, Rend. Sem. Mat. Fis. Milano, 58 (1988), 253. doi: 10.1007/BF02925245. Google Scholar

[4]

L. Caffarelli, Interior a priori estimates for solutions of fully non linear equations,, Ann. of Math., 130 (1989), 189. doi: 10.2307/1971480. Google Scholar

[5]

S. Campanato, Equazioni ellittiche del $II$ ordine e spazi $\mathcalL^{2,\lambda},$, Ann. Mat. Pura Appl., 69 (1965), 321. doi: 10.1007/BF02414377. Google Scholar

[6]

S. Campanato, A maximum principle for non-linear elliptic systems: Boundary fundamental estimates,, Adv. Math., 66 (1987), 291. doi: 10.1016/0001-8708(87)90037-5. Google Scholar

[7]

S. Campanato, Elliptic systems with non-linearity $q$ greater or equal $2. $Regularity of the solution of the Dirichlet problem,, Ann. Mat. Pura Appl., 147 (1987), 117. doi: 10.1007/BF01762414. Google Scholar

[8]

F. Chiarenza, M. Frasca and P. Longo, Interior $W^{2,p}$ estimates for non divergence elliptic equations with discontinuous coefficients,, Ric. di Mat., XL (1991), 149. Google Scholar

[9]

E. Di Benedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic vequations,, Nonlinear Anal., 7 (1983), 827. doi: 10.1016/0362-546X(83)90061-5. Google Scholar

[10]

J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds,, Amer. J. Math., 86 (1964), 253. doi: 10.2307/2373037. Google Scholar

[11]

M. Fuchs, Everywhere regularity theorems for mapping which minimize $p$-energy,, Comment. Math. Univ. Carolin., 28 (1987), 673. Google Scholar

[12]

M. Fuchs, $p$-harmonic obstacle problems. I. Partial regularity theory,, Ann. Mat. Pura Appl. (4), 156 (1990), 127. doi: 10.1007/BF01766976. Google Scholar

[13]

N. Fusco and J. Hutchinson, Partial regularity for minimisers of certain functionals having nonquadratic growth,, Ann. Mat. Pura Appl., 155 (1989), 1. doi: 10.1007/BF01765932. Google Scholar

[14]

M. Giaquinta, "Introduction to Regularity Theory for Nonlinear Elliptic Systems,", Lectures in Mathematics, (1993). Google Scholar

[15]

M. Giaquinta and E. Giusti, Partial regularity for the solution to nonlinear parabolic systems,, Ann. Mat. Pura Appl., 47 (1973), 253. Google Scholar

[16]

M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals,, Acta Math., 148 (1982), 31. doi: 10.1007/BF02392725. Google Scholar

[17]

M. Giaquinta and E. Giusti, Differentiability of minima of non-differentiable functionals,, Inv. Math., 72 (1983), 285. doi: 10.1007/BF01389324. Google Scholar

[18]

M. Giaquinta and E. Giusti, The singular set of the minima of certain quadratic functionals,, Ann. Sc. Norm. Sup. Pisa, 9 (1984), 45. Google Scholar

[19]

M. Giaquinta and P. A. Ivert, Partial regularity for minima of variational integrals,, Ark. Mat., 25 (1987), 221. doi: 10.1007/BF02384445. Google Scholar

[20]

M. Giaquinta and G. Modica, Regularity results for some classes of higher order non linear elliptic systems,, J. Reine Angew. Math., 311/312 (1979), 145. Google Scholar

[21]

M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals,, Ann. Inst. H. Poincaré, 3 (1986), 185. Google Scholar

[22]

M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals,, Manuscripta Math., 57 (1986), 55. doi: 10.1007/BF01172492. Google Scholar

[23]

E. Giusti, Regolarita' parziale delle soluzioni deboli di una classe di sistemi ellittici quasi lineari di ordine arbitrario,, Ann. Sc. Norm. Sup. Pisa, 23 (1969), 115. Google Scholar

[24]

E. Giusti, "Direct Method in the Calculus of Variations,", World Scientific, (2003). Google Scholar

[25]

E. Giusti and M. Miranda, Sulla regolarita' delle soluzioni deboli di una classe di sistemi ellittici quasilineari,, Arch. Rat. Mech. Anal., 31 (1968), 173. doi: 10.1007/BF00282679. Google Scholar

[26]

R. Hardt and F.-H. Lin, Mappings minimizing the $L^p$ norm of the gradient,, Comm. Pure Appl. Math., 40 (1987), 555. doi: 10.1002/cpa.3160400503. Google Scholar

[27]

F. John and L. Nirenberg, On functions of bounded mean oscillation,, Comm. Pure Appl. Math., 14 (1961), 415. doi: 10.1002/cpa.3160140317. Google Scholar

[28]

J. Kinnunen and S. Zhou, A local estimate for nonlinear equations with discontinuous coefficients,, Comm. Partial Differential Equations, 24 (1999), 2043. Google Scholar

[29]

J. Kristensen and G. Mingione, The singular set of minima of integral functionals,, Arch. Ration. Mech. Anal., 180 (2006), 331. doi: 10.1007/s00205-005-0402-5. Google Scholar

[30]

J. J. Manfredi, Regularity for minima of functionals with $p$-growth,, J. Differential Equations, 76 (1988), 203. Google Scholar

[31]

G. Mingione, Singularities of minima: A walk on the wild side of the calculus of variations,, J. Global Optim., 40 (2008), 209. doi: 10.1007/s10898-007-9226-1. Google Scholar

[32]

C. B. Morrey Jr., Partial regularity results for nonlinear elliptic systems,, Journ. Math. and Mech., 17 (): 649. Google Scholar

[33]

M. A. Ragusa and A. Tachikawa, "Interior Estimates in Campanato Spaces Related to Quadratic Functionals,", Proceedings of Research Institute of Mathematical Sciences, (2004), 54. Google Scholar

[34]

M. A. Ragusa and A. Tachikawa, Regularity of the minimizers of some variational integrals with discontinuity,, Z. Anal. Anwend., 27 (2008), 469. doi: 10.4171/ZAA/1366. Google Scholar

[35]

D. Sarason, On functions of vanishing mean oscillation,, Trans. Amer. Math. Soc., 207 (1975), 391. doi: 10.1090/S0002-9947-1975-0377518-3. Google Scholar

[36]

L. M. Sibner and R. B. Sibner, A non-linear Hodge de Rham theorem,, Acta Math., 125 (1970), 57. doi: 10.1007/BF02392330. Google Scholar

[37]

P. Tolksdorf, Everywhere-regularity for some quasilinear systems with a lack of ellipticity,, Ann. Mat. Pura Appl., 134 (1983), 241. doi: 10.1007/BF01773507. Google Scholar

[38]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Differential Equations, 51 (1984), 126. Google Scholar

[39]

K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems,, Acta Math., 138 (1977), 219. doi: 10.1007/BF02392316. Google Scholar

[1]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[2]

Shuhong Chen, Zhong Tan. Optimal partial regularity results for nonlinear elliptic systems in Carnot groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3391-3405. doi: 10.3934/dcds.2013.33.3391

[3]

Delia Schiera. Existence and non-existence results for variational higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5145-5161. doi: 10.3934/dcds.2018227

[4]

Shuhong Chen, Zhong Tan. Optimal interior partial regularity for nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 981-993. doi: 10.3934/dcds.2010.27.981

[5]

Luigi C. Berselli, Carlo R. Grisanti. On the regularity up to the boundary for certain nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 53-71. doi: 10.3934/dcdss.2016.9.53

[6]

Christos Gavriel, Richard Vinter. Regularity of minimizers for second order variational problems in one independent variable. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 547-557. doi: 10.3934/dcds.2011.29.547

[7]

Luisa Fattorusso, Antonio Tarsia. Regularity in Campanato spaces for solutions of fully nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1307-1323. doi: 10.3934/dcds.2011.31.1307

[8]

Brahim Bougherara, Jacques Giacomoni, Jesus Hernández. Some regularity results for a singular elliptic problem. Conference Publications, 2015, 2015 (special) : 142-150. doi: 10.3934/proc.2015.0142

[9]

P. Di Gironimo, L. D’Onofrio. On the regularity of minimizers to degenerate functionals. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1311-1318. doi: 10.3934/cpaa.2010.9.1311

[10]

Florent Berthelin, Paola Goatin. Regularity results for the solutions of a non-local model of traffic flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3197-3213. doi: 10.3934/dcds.2019132

[11]

Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869

[12]

Ilaria Fragalà, Filippo Gazzola, Gary Lieberman. Regularity and nonexistence results for anisotropic quasilinear elliptic equations in convex domains. Conference Publications, 2005, 2005 (Special) : 280-286. doi: 10.3934/proc.2005.2005.280

[13]

Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105

[14]

Serena Dipierro. Geometric inequalities and symmetry results for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3473-3496. doi: 10.3934/dcds.2013.33.3473

[15]

Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184

[16]

Sunra J. N. Mosconi. Optimal elliptic regularity: A comparison between local and nonlocal equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 547-559. doi: 10.3934/dcdss.2018030

[17]

Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121

[18]

Rong Dong, Dongsheng Li, Lihe Wang. Regularity of elliptic systems in divergence form with directional homogenization. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 75-90. doi: 10.3934/dcds.2018004

[19]

Orlando Lopes. Uniqueness and radial symmetry of minimizers for a nonlocal variational problem. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2265-2282. doi: 10.3934/cpaa.2019102

[20]

Hugo Beirão da Veiga, Francesca Crispo. On the global regularity for nonlinear systems of the $p$-Laplacian type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1173-1191. doi: 10.3934/dcdss.2013.6.1173

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]