December  2011, 31(4): 1469-1477. doi: 10.3934/dcds.2011.31.1469

Hyers--Ulam--Rassias stability of derivations in proper Jordan $CQ^{*}$-algebras

1. 

Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran, Iran

Received  October 2009 Revised  February 2010 Published  September 2011

In this paper, we investigate derivation in proper Jordan $CQ^{*}$-algebras associated with the following Pexiderized Jensen type functional equation \[kf(\frac{x+y}{k}) = f_{0}(x)+ f_{1} (y).\] This is applied to investigate derivations and their Hyers--Ulam--Rassias stability in proper Jordan $CQ^{*}$-algebras.
Citation: Golamreza Zamani Eskandani, Hamid Vaezi. Hyers--Ulam--Rassias stability of derivations in proper Jordan $CQ^{*}$-algebras. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1469-1477. doi: 10.3934/dcds.2011.31.1469
References:
[1]

J.-P. Antoine, A. Inoue and C. Trapani, "Partial *-Algebras and Their Operator Realizations," Mathematics and its Applications, 553, Kluwer Academic Publishers, Dordrecht, 2002.  Google Scholar

[2]

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.  Google Scholar

[3]

F. Bagarello, A. Inoue and C. Trapani, Some classes of topological quasi *-algebras, Proc. Amer. Math. Soc., 129 (2001), 2973-2980. doi: 10.1090/S0002-9939-01-06019-1.  Google Scholar

[4]

F. Bagarello and G. Morchio, Dynamics of mean-field spin models from basic results in abstract differential equations, J. Stat. Phys., 66 (1992), 849-866. doi: 10.1007/BF01055705.  Google Scholar

[5]

F. Bagarello and C. Trapani, States and representations of $CQ$*-algebras, Ann. Inst. H. Poincaré Phys. Théor., 61 (1994), 103-133.  Google Scholar

[6]

F. Bagarello and C. Trapani, $CQ$*-algebras: Structure properties, Publ. Res. Inst. Math. Sci., 32 (1996), 85-116. doi: 10.2977/prims/1195163181.  Google Scholar

[7]

F. Bagarello and C. Trapani, Morphisms of certain Banach $C$*-modules, Publ. Res. Inst. Math. Sci., 36 (2000), 681-705. doi: 10.2977/prims/1195139642.  Google Scholar

[8]

S. Czerwik, "Stability of Functional Equations of Ulam-Hyers-Rassias Type,", Hadronic Press, ().   Google Scholar

[9]

S. Czerwik, "Functional Equations and Inequalities in Several Variables," World Scientific Publishing Co., Inc., River Edge, NJ, 2002.  Google Scholar

[10]

G. O. S. Ekhaguere, Partial $W$*-dynamical systems, in "Current Topics in Operator Algebras" (Nara, 1990), World Scientific Publ., River Edge, NJ, (1991), 202-217.  Google Scholar

[11]

G. Z. Eskandani, On the Hyers-–Ulam-–Rassias stability of an additive functional equation in quasi-Banach spaces, J. Math. Anal. Appl., 345 (2008), 405-409. doi: 10.1016/j.jmaa.2008.03.039.  Google Scholar

[12]

G. Z. Eskandani, H. Vaezi and Y. N. Dehghan, Stability of a mixed additive and quadratic functional equation in non-Archimedean Banach modules, Taiwanese J. Math., 14 (2010), 1309-1324.  Google Scholar

[13]

P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. doi: 10.1006/jmaa.1994.1211.  Google Scholar

[14]

R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys., 5 (1964), 848-861. doi: 10.1063/1.1704187.  Google Scholar

[15]

D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222.  Google Scholar

[16]

D. H. Hyers, G. Isac Th. M. Rassias, "Stability of Functional Equations in Several Variables," Progress in Nonlinear Differential Equations and their Applications, 34, Birkhäuser Boston, Inc., Boston, MA, 1998.  Google Scholar

[17]

D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125-153. doi: 10.1007/BF01830975.  Google Scholar

[18]

S.-M. Jung, "Hyers-Ulam-Rassias Stability of Functional Equations in Mathimatical Analysis," Hadronic Press, Palm Harbor, FL, 2001.  Google Scholar

[19]

Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math., 22 (1989), 499-507.  Google Scholar

[20]

G. Lassner, Topological algebras and their applications in quantum statistics, Wiss. Z. KMU, Leipzig, Math.-Nat. R., 30 (1981), 572-595.  Google Scholar

[21]

G. Lassner and G. A. Lassner, Quasi* -algebras and twisted product, Publ. RIMS, 25 (1989), 279-299. doi: 10.2977/prims/1195173612.  Google Scholar

[22]

F. Moradlou, H. Vaezi and C. Park, Fixed points and stability of an additive functional equation of $n$-Apollonius type in $C$*-algebras, Abstract and Applied Analysis, 2008, Article ID 672618, 13 pp. doi: 10.1155/2008/672618.  Google Scholar

[23]

F. Moradlou, H. Vaezi and G. Z. Eskandani, Hyers-–Ulam-–Rassias stability of a quadratic and additive functional equation in quasi-Banach spaces, Mediterr. J. of Math., 6 (2009), 233-248.  Google Scholar

[24]

A. Najati and G. Z. Eskandani, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl., 342 (2008), 1318-1331. doi: 10.1016/j.jmaa.2007.12.039.  Google Scholar

[25]

C. Park, Homomorphisms between Poisson $JC$*-algebras, Bull. Braz. Math. Soc., 36 (2005), 79-97. doi: 10.1007/s00574-005-0029-z.  Google Scholar

[26]

C. Park and Th. M. Rassias, Homomorphisms and derivations in proper $JCQ$*-triples, J. Math. Anal. Appl., 337 (2008), 1404-1414. doi: 10.1016/j.jmaa.2007.04.063.  Google Scholar

[27]

J. C. Parnami and H. L. Vasudeva, On Jensen’s functional equation, Aequationes Math., 43 (1992), 211-218. doi: 10.1007/BF01835703.  Google Scholar

[28]

Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1.  Google Scholar

[29]

Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl., 158 (1991), 106-113. doi: 10.1016/0022-247X(91)90270-A.  Google Scholar

[30]

Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Applicandae Mathematicae, 62 (2000), 23-130. doi: 10.1023/A:1006499223572.  Google Scholar

[31]

Th. M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl., 173 (1993), 325-338. doi: 10.1006/jmaa.1993.1070.  Google Scholar

[32]

G. L. Sewell, "Quantum Mechanics and its Emergent Macrophysics," Princeton Univ. Press, Princeton, NJ, 2002.  Google Scholar

[33]

C. Trapani, Quasi-*-algebras of operators and their applications, Rev. Math. Phys., 7 (1995), 1303-1332. doi: 10.1142/S0129055X95000475.  Google Scholar

[34]

S. M. Ulam, "A Collection of the Mathematical Problems," Interscience Tracts in Pure and Applied Mathematics, 8, Interscience Publ., New York-London, 1960.  Google Scholar

show all references

References:
[1]

J.-P. Antoine, A. Inoue and C. Trapani, "Partial *-Algebras and Their Operator Realizations," Mathematics and its Applications, 553, Kluwer Academic Publishers, Dordrecht, 2002.  Google Scholar

[2]

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.  Google Scholar

[3]

F. Bagarello, A. Inoue and C. Trapani, Some classes of topological quasi *-algebras, Proc. Amer. Math. Soc., 129 (2001), 2973-2980. doi: 10.1090/S0002-9939-01-06019-1.  Google Scholar

[4]

F. Bagarello and G. Morchio, Dynamics of mean-field spin models from basic results in abstract differential equations, J. Stat. Phys., 66 (1992), 849-866. doi: 10.1007/BF01055705.  Google Scholar

[5]

F. Bagarello and C. Trapani, States and representations of $CQ$*-algebras, Ann. Inst. H. Poincaré Phys. Théor., 61 (1994), 103-133.  Google Scholar

[6]

F. Bagarello and C. Trapani, $CQ$*-algebras: Structure properties, Publ. Res. Inst. Math. Sci., 32 (1996), 85-116. doi: 10.2977/prims/1195163181.  Google Scholar

[7]

F. Bagarello and C. Trapani, Morphisms of certain Banach $C$*-modules, Publ. Res. Inst. Math. Sci., 36 (2000), 681-705. doi: 10.2977/prims/1195139642.  Google Scholar

[8]

S. Czerwik, "Stability of Functional Equations of Ulam-Hyers-Rassias Type,", Hadronic Press, ().   Google Scholar

[9]

S. Czerwik, "Functional Equations and Inequalities in Several Variables," World Scientific Publishing Co., Inc., River Edge, NJ, 2002.  Google Scholar

[10]

G. O. S. Ekhaguere, Partial $W$*-dynamical systems, in "Current Topics in Operator Algebras" (Nara, 1990), World Scientific Publ., River Edge, NJ, (1991), 202-217.  Google Scholar

[11]

G. Z. Eskandani, On the Hyers-–Ulam-–Rassias stability of an additive functional equation in quasi-Banach spaces, J. Math. Anal. Appl., 345 (2008), 405-409. doi: 10.1016/j.jmaa.2008.03.039.  Google Scholar

[12]

G. Z. Eskandani, H. Vaezi and Y. N. Dehghan, Stability of a mixed additive and quadratic functional equation in non-Archimedean Banach modules, Taiwanese J. Math., 14 (2010), 1309-1324.  Google Scholar

[13]

P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. doi: 10.1006/jmaa.1994.1211.  Google Scholar

[14]

R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys., 5 (1964), 848-861. doi: 10.1063/1.1704187.  Google Scholar

[15]

D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222.  Google Scholar

[16]

D. H. Hyers, G. Isac Th. M. Rassias, "Stability of Functional Equations in Several Variables," Progress in Nonlinear Differential Equations and their Applications, 34, Birkhäuser Boston, Inc., Boston, MA, 1998.  Google Scholar

[17]

D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125-153. doi: 10.1007/BF01830975.  Google Scholar

[18]

S.-M. Jung, "Hyers-Ulam-Rassias Stability of Functional Equations in Mathimatical Analysis," Hadronic Press, Palm Harbor, FL, 2001.  Google Scholar

[19]

Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math., 22 (1989), 499-507.  Google Scholar

[20]

G. Lassner, Topological algebras and their applications in quantum statistics, Wiss. Z. KMU, Leipzig, Math.-Nat. R., 30 (1981), 572-595.  Google Scholar

[21]

G. Lassner and G. A. Lassner, Quasi* -algebras and twisted product, Publ. RIMS, 25 (1989), 279-299. doi: 10.2977/prims/1195173612.  Google Scholar

[22]

F. Moradlou, H. Vaezi and C. Park, Fixed points and stability of an additive functional equation of $n$-Apollonius type in $C$*-algebras, Abstract and Applied Analysis, 2008, Article ID 672618, 13 pp. doi: 10.1155/2008/672618.  Google Scholar

[23]

F. Moradlou, H. Vaezi and G. Z. Eskandani, Hyers-–Ulam-–Rassias stability of a quadratic and additive functional equation in quasi-Banach spaces, Mediterr. J. of Math., 6 (2009), 233-248.  Google Scholar

[24]

A. Najati and G. Z. Eskandani, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl., 342 (2008), 1318-1331. doi: 10.1016/j.jmaa.2007.12.039.  Google Scholar

[25]

C. Park, Homomorphisms between Poisson $JC$*-algebras, Bull. Braz. Math. Soc., 36 (2005), 79-97. doi: 10.1007/s00574-005-0029-z.  Google Scholar

[26]

C. Park and Th. M. Rassias, Homomorphisms and derivations in proper $JCQ$*-triples, J. Math. Anal. Appl., 337 (2008), 1404-1414. doi: 10.1016/j.jmaa.2007.04.063.  Google Scholar

[27]

J. C. Parnami and H. L. Vasudeva, On Jensen’s functional equation, Aequationes Math., 43 (1992), 211-218. doi: 10.1007/BF01835703.  Google Scholar

[28]

Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1.  Google Scholar

[29]

Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl., 158 (1991), 106-113. doi: 10.1016/0022-247X(91)90270-A.  Google Scholar

[30]

Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Applicandae Mathematicae, 62 (2000), 23-130. doi: 10.1023/A:1006499223572.  Google Scholar

[31]

Th. M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl., 173 (1993), 325-338. doi: 10.1006/jmaa.1993.1070.  Google Scholar

[32]

G. L. Sewell, "Quantum Mechanics and its Emergent Macrophysics," Princeton Univ. Press, Princeton, NJ, 2002.  Google Scholar

[33]

C. Trapani, Quasi-*-algebras of operators and their applications, Rev. Math. Phys., 7 (1995), 1303-1332. doi: 10.1142/S0129055X95000475.  Google Scholar

[34]

S. M. Ulam, "A Collection of the Mathematical Problems," Interscience Tracts in Pure and Applied Mathematics, 8, Interscience Publ., New York-London, 1960.  Google Scholar

[1]

Chao Wang, Zhien Li, Ravi P. Agarwal. Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021041

[2]

A. S. Dzhumadil'daev. Jordan elements and Left-Center of a Free Leibniz algebra. Electronic Research Announcements, 2011, 18: 31-49. doi: 10.3934/era.2011.18.31

[3]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[4]

Manuel V. C. Vieira. Derivatives of eigenvalues and Jordan frames. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 115-126. doi: 10.3934/naco.2016003

[5]

Thiago Ferraiol, Mauro Patrão, Lucas Seco. Jordan decomposition and dynamics on flag manifolds. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 923-947. doi: 10.3934/dcds.2010.26.923

[6]

Víctor Ayala, Adriano Da Silva, Philippe Jouan. Jordan decomposition and the recurrent set of flows of automorphisms. Discrete & Continuous Dynamical Systems, 2021, 41 (4) : 1543-1559. doi: 10.3934/dcds.2020330

[7]

M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.

[8]

Yu-Lin Chang, Chin-Yu Yang. Some useful inequalities via trace function method in Euclidean Jordan algebras. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 39-48. doi: 10.3934/naco.2014.4.39

[9]

Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29 (3) : 2457-2473. doi: 10.3934/era.2020124

[10]

Joseph Bayara, André Conseibo, Artibano Micali, Moussa Ouattara. Derivations in power-associative algebras. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1359-1370. doi: 10.3934/dcdss.2011.4.1359

[11]

Gengsheng Wang, Yashan Xu. Advantages for controls imposed in a proper subset. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2427-2439. doi: 10.3934/dcdsb.2013.18.2427

[12]

Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017

[13]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066

[14]

Suthep Suantai, Nattawut Pholasa, Prasit Cholamjiak. The modified inertial relaxed CQ algorithm for solving the split feasibility problems. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1595-1615. doi: 10.3934/jimo.2018023

[15]

Chinmay Kumar Giri. Index-proper nonnegative splittings of matrices. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 103-113. doi: 10.3934/naco.2016002

[16]

Neşet Deniz Turgay. On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28 (2) : 951-959. doi: 10.3934/era.2020050

[17]

Hari Bercovici, Viorel Niţică. A Banach algebra version of the Livsic theorem. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 523-534. doi: 10.3934/dcds.1998.4.523

[18]

Gary Froyland. On Ulam approximation of the isolated spectrum and eigenfunctions of hyperbolic maps. Discrete & Continuous Dynamical Systems, 2007, 17 (3) : 671-689. doi: 10.3934/dcds.2007.17.671

[19]

Simone Paleari, Tiziano Penati. Equipartition times in a Fermi-Pasta-Ulam system. Conference Publications, 2005, 2005 (Special) : 710-719. doi: 10.3934/proc.2005.2005.710

[20]

Christopher Bose, Rua Murray. The exact rate of approximation in Ulam's method. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 219-235. doi: 10.3934/dcds.2001.7.219

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]