Advanced Search
Article Contents
Article Contents

Hyers--Ulam--Rassias stability of derivations in proper Jordan $CQ^{*}$-algebras

Abstract Related Papers Cited by
  • In this paper, we investigate derivation in proper Jordan $CQ^{*}$-algebras associated with the following Pexiderized Jensen type functional equation \[kf(\frac{x+y}{k}) = f_{0}(x)+ f_{1} (y).\] This is applied to investigate derivations and their Hyers--Ulam--Rassias stability in proper Jordan $CQ^{*}$-algebras.
    Mathematics Subject Classification: 17B40, 39B52, 47N50, 47L60, 46B03.


    \begin{equation} \\ \end{equation}
  • [1]

    J.-P. Antoine, A. Inoue and C. Trapani, "Partial *-Algebras and Their Operator Realizations," Mathematics and its Applications, 553, Kluwer Academic Publishers, Dordrecht, 2002.


    T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.


    F. Bagarello, A. Inoue and C. Trapani, Some classes of topological quasi *-algebras, Proc. Amer. Math. Soc., 129 (2001), 2973-2980.doi: 10.1090/S0002-9939-01-06019-1.


    F. Bagarello and G. Morchio, Dynamics of mean-field spin models from basic results in abstract differential equations, J. Stat. Phys., 66 (1992), 849-866.doi: 10.1007/BF01055705.


    F. Bagarello and C. Trapani, States and representations of $CQ$*-algebras, Ann. Inst. H. Poincaré Phys. Théor., 61 (1994), 103-133.


    F. Bagarello and C. Trapani, $CQ$*-algebras: Structure properties, Publ. Res. Inst. Math. Sci., 32 (1996), 85-116.doi: 10.2977/prims/1195163181.


    F. Bagarello and C. Trapani, Morphisms of certain Banach $C$*-modules, Publ. Res. Inst. Math. Sci., 36 (2000), 681-705.doi: 10.2977/prims/1195139642.


    S. Czerwik, "Stability of Functional Equations of Ulam-Hyers-Rassias Type," Hadronic Press, Inc., Palm Harbor, USA, pp. 200.


    S. Czerwik, "Functional Equations and Inequalities in Several Variables," World Scientific Publishing Co., Inc., River Edge, NJ, 2002.


    G. O. S. Ekhaguere, Partial $W$*-dynamical systems, in "Current Topics in Operator Algebras" (Nara, 1990), World Scientific Publ., River Edge, NJ, (1991), 202-217.


    G. Z. Eskandani, On the Hyers-–Ulam-–Rassias stability of an additive functional equation in quasi-Banach spaces, J. Math. Anal. Appl., 345 (2008), 405-409.doi: 10.1016/j.jmaa.2008.03.039.


    G. Z. Eskandani, H. Vaezi and Y. N. Dehghan, Stability of a mixed additive and quadratic functional equation in non-Archimedean Banach modules, Taiwanese J. Math., 14 (2010), 1309-1324.


    P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.doi: 10.1006/jmaa.1994.1211.


    R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys., 5 (1964), 848-861.doi: 10.1063/1.1704187.


    D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27 (1941), 222-224.doi: 10.1073/pnas.27.4.222.


    D. H. Hyers, G. Isac Th. M. Rassias, "Stability of Functional Equations in Several Variables," Progress in Nonlinear Differential Equations and their Applications, 34, Birkhäuser Boston, Inc., Boston, MA, 1998.


    D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125-153.doi: 10.1007/BF01830975.


    S.-M. Jung, "Hyers-Ulam-Rassias Stability of Functional Equations in Mathimatical Analysis," Hadronic Press, Palm Harbor, FL, 2001.


    Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math., 22 (1989), 499-507.


    G. Lassner, Topological algebras and their applications in quantum statistics, Wiss. Z. KMU, Leipzig, Math.-Nat. R., 30 (1981), 572-595.


    G. Lassner and G. A. Lassner, Quasi* -algebras and twisted product, Publ. RIMS, 25 (1989), 279-299.doi: 10.2977/prims/1195173612.


    F. Moradlou, H. Vaezi and C. Park, Fixed points and stability of an additive functional equation of $n$-Apollonius type in $C$*-algebras, Abstract and Applied Analysis, 2008, Article ID 672618, 13 pp.doi: 10.1155/2008/672618.


    F. Moradlou, H. Vaezi and G. Z. Eskandani, Hyers-–Ulam-–Rassias stability of a quadratic and additive functional equation in quasi-Banach spaces, Mediterr. J. of Math., 6 (2009), 233-248.


    A. Najati and G. Z. Eskandani, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl., 342 (2008), 1318-1331.doi: 10.1016/j.jmaa.2007.12.039.


    C. Park, Homomorphisms between Poisson $JC$*-algebras, Bull. Braz. Math. Soc., 36 (2005), 79-97.doi: 10.1007/s00574-005-0029-z.


    C. Park and Th. M. Rassias, Homomorphisms and derivations in proper $JCQ$*-triples, J. Math. Anal. Appl., 337 (2008), 1404-1414.doi: 10.1016/j.jmaa.2007.04.063.


    J. C. Parnami and H. L. Vasudeva, On Jensen’s functional equation, Aequationes Math., 43 (1992), 211-218.doi: 10.1007/BF01835703.


    Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.doi: 10.1090/S0002-9939-1978-0507327-1.


    Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl., 158 (1991), 106-113.doi: 10.1016/0022-247X(91)90270-A.


    Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Applicandae Mathematicae, 62 (2000), 23-130.doi: 10.1023/A:1006499223572.


    Th. M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl., 173 (1993), 325-338.doi: 10.1006/jmaa.1993.1070.


    G. L. Sewell, "Quantum Mechanics and its Emergent Macrophysics," Princeton Univ. Press, Princeton, NJ, 2002.


    C. Trapani, Quasi-*-algebras of operators and their applications, Rev. Math. Phys., 7 (1995), 1303-1332.doi: 10.1142/S0129055X95000475.


    S. M. Ulam, "A Collection of the Mathematical Problems," Interscience Tracts in Pure and Applied Mathematics, 8, Interscience Publ., New York-London, 1960.

  • 加载中

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint