\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system

Abstract / Introduction Related Papers Cited by
  • This article deals with the existence and orbital stability of a two--parameter family of periodic traveling-wave solutions for the Klein-Gordon-Schrödinger system with Yukawa interaction. The existence of such a family of periodic waves is deduced from the Implicit Function Theorem, and the orbital stability is obtained from arguments due to Benjamin, Bona, and Weinstein.
    Mathematics Subject Classification: Primary: 35B10, 35B35; Secondary: 35Q99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Angulo Pava, Nonlinear stability of periodic traveling wave solutions to the Schrödinger and modified Korteweg-de Vries equations, J. Differential Equations, 235 (2007), 1-30.

    [2]

    J. Angulo Pava, J. L. Bona, and M. Scialom, Stability of cnoidal waves, Adv. Differential Equations, 11 (2006), 1321-1374.

    [3]

    J. Angulo Pava, C. Matheus and D. Pilod, Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system, Commun. Pure Appl. Anal., 8 (2009), 815-844.

    [4]

    J. Angulo Pava and F. Natali, Positivity properties of the Fourier transform and stability of periodic travelling-wave solutions, SIAM J. Math. Anal., 40 (2008), 1123-1151.doi: 10.1137/080718450.

    [5]

    J. Angulo Pava and F. Natali, Stability and instability of periodic travelling wave solutions for the critical Korteweg-de Vries and non-linear Schrödinger equations, Physica D, 238 (2009), 603-621.doi: 10.1016/j.physd.2008.12.011.

    [6]

    J. Angulo Pava and A. Pastor Ferreira, Stability of periodic optical solitons for a nonlinear Schrödinger system, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 927-959.

    [7]

    J.-B. Baillon and J. M. Chadam, The Cauchy problem for the coupled Schrödinger-Klein-Gordon equations, in "Contemporary Developments in Continuum Mechanics and Partial Differential Equations,'' Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, (1978), 37-44.doi: 10.1016/S0304-0208(08)70857-0.

    [8]

    T. B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. London Ser. A, 338 (1972), 153-183.

    [9]

    J. L. Bona, On the stability theory of solitary waves, Proc. Roy. Soc. London Ser. A, 344 (1975), 363-374.doi: 10.1098/rspa.1975.0106.

    [10]

    P. F. Byrd and M. D. Friedman, "Handbook of Elliptic Integrals for Engineers and Scientists,'' $2^{nd}$ edition, Springer-Verlag, New York-Heidelberg, 1971.

    [11]

    T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.doi: 10.1007/BF01403504.

    [12]

    J. Colliander, J. Holmer and N. Tzirakis, Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems, Trans. Amer. Math. Soc., 360 (2008), 4619-4638.doi: 10.1090/S0002-9947-08-04295-5.

    [13]

    I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations. II, J. Math. Anal. Appl., 66 (1978), 358-378.doi: 10.1016/0022-247X(78)90239-1.

    [14]

    T. Gallay and M. Hărăguş, Stability of small periodic waves for the nonlinear Schrödinger equation, J. Differential Equations, 234 (2007), 544-581.doi: 10.1016/j.jde.2006.12.007.

    [15]

    T. Gallay and M. Hărăguş, Orbital Stability of periodic waves for the nonlinear Schrödinger equation, J. Dynam. Differential Equations, 19 (2007), 825-865.doi: 10.1007/s10884-007-9071-4.

    [16]

    M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.doi: 10.1016/0022-1236(87)90044-9.

    [17]

    M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal., 94 (1990), 308-348.doi: 10.1016/0022-1236(90)90016-E.

    [18]

    M. Grillakis, Linearized instability for nonlinear Schrödinger and Klein-Gordon equations, Comm. Pure Appl. Math., 41 (1988), 747-774.doi: 10.1002/cpa.3160410602.

    [19]

    M. Grillakis, Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system, Comm. Pure Appl. Math., 43 (1990), 299-333.doi: 10.1002/cpa.3160430302.

    [20]

    T. Kato, "Perturbation Theory for Linear Operators,'' reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.

    [21]

    H. Kikuchi and M. Ohta, Instability of standing waves for the Klein-Gordon-Schrödinger system, Hokkaido Math. J., 37 (2008), 735-748.

    [22]

    H. Kikuchi and M. Ohta, Stability of standing waves for the Klein-Gordon-Schrödinger system, J. Math. Anal. Appl., 365 (2010), 109-114.doi: 10.1016/j.jmaa.2009.10.024.

    [23]

    W. Magnus and S. Winkler, "Hill's Equation,'' corrected reprint of the 1966 edition, Dover Publications, Inc., New York, 1979.

    [24]

    F. Natali and A. Pastor Ferreira, Stability properties of periodic standing waves for the Klein-Gordon-Schrödinger system, Commun. Pure Appl. Anal., 9 (2010), 413-430.doi: 10.3934/cpaa.2010.9.413.

    [25]

    F. Natali and A. Pastor Ferreira, Stability and instability of periodic standing wave solutions for some Klein-Gordon equations, J. Math. Anal. Appl., 347 (2008), 428-441.doi: 10.1016/j.jmaa.2008.06.033.

    [26]

    M. Ohta, Stability of solitary waves for coupled Klein-Gordon-Schrödinger equations in one space dimension, Variational Problems and Related Topics, (Japanese) (Kyoto, 1998), S/=urikaisekikenkyūsho Kōkyūroku, 1076 (1999), 83-92.

    [27]

    M. Ohta, Stability of stationary states for the coupled Klein-Gordon-Schrdinger equations, Nonlinear Anal., 27 (1996), 455-461.doi: 10.1016/0362-546X(95)00017-P.

    [28]

    H. Pecher, Global solutions of the Klein-Gordon-Schrödinger system with rough data, Differential Integral Equations, 17 (2004), 179-214.

    [29]

    S. Rabsztyn, On the Cauchy problem for the coupled Schrödinger-Klein-Gordon equations in one space dimension, J. Math. Phys., 25 (1984), 1262-1265.doi: 10.1063/1.526281.

    [30]

    M. Reed and B. Simon, "Methods of Modern Mathematical Physics," IV, Analysis of Operators, Academic Press, New York-London, 1978.

    [31]

    X.-Y. Tang and W. Ding, The general Klein-Gordon-Schrödinger system: Modulational instability and exact solutions, Phys. Scr., 77 (2008), 1-8.doi: 10.1088/0031-8949/77/01/015004.

    [32]

    N. Tzirakis, The Cauchy problem for the Klein-Gordon-Schrödinger system in low dimensions below the energy space, Comm. Partial Differential Equations, 30 (2005), 605-641.doi: 10.1081/PDE-200059260.

    [33]

    M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.doi: 10.1002/cpa.3160390103.

    [34]

    M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.doi: 10.1137/0516034.

    [35]

    M. Y. Yu and P. K. Shukla, On the formation of upper-hybrid solitons, Plasma Phys., 19 (1977), 889-893.doi: 10.1088/0032-1028/19/9/008.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(172) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return