March  2011, 31(1): 239-252. doi: 10.3934/dcds.2011.31.239

Attractors for the three-dimensional incompressible Navier-Stokes equations with damping

1. 

College of science, Xi’an Jiaotong University, Xi’an, 710049, China, China

Received  March 2010 Revised  October 2010 Published  June 2011

In this paper, we show that the strong solution of the three-dimensional Navier-Stokes equations with damping $\alpha|u|^{\beta-1}u\ (\alpha>0, \frac{7}{2}\leq \beta\leq 5)$ has global attractors in $V$ and $H^2(\Omega)$ when initial data $u_0\in V$, where $\Omega\subset \mathbb{R}^3$ is bounded.
Citation: Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239
References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", Studies in Mathematics and its Applications, 25 (1992).   Google Scholar

[2]

X. Cai and Q. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping,, J. Math. Anal. Appl., 343 (2008), 799.  doi: 10.1016/j.jmaa.2008.01.041.  Google Scholar

[3]

A. Cheskidov and C. Foias, On global attractors of the 3D Navier-Stokes equations,, J. Diff. Eqns., 231 (2006), 714.  doi: 10.1016/j.jde.2006.08.021.  Google Scholar

[4]

N. J. Cutland, Global attractors for small samples and germs of 3D Navier-Stokes equations,, Nonlinear Anal., 62 (2005), 265.  doi: 10.1016/j.na.2005.02.114.  Google Scholar

[5]

A. V. Kapustyan and J. Valero, Weak and srong attractors for the 3D Navier-Stokes system,, J. Diff. Eqns., 240 (2007), 249.  doi: 10.1016/j.jde.2007.06.008.  Google Scholar

[6]

J. C. Robinson, "Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,", Cambridge Texts in Applied Mathematics, (2001).   Google Scholar

[7]

R. Rosa, The global attractors for the 2D Navier-Stokes flow on some unbounded domains,, Nonlinear Anal., 32 (1998), 71.  doi: 10.1016/S0362-546X(97)00453-7.  Google Scholar

[8]

G. R. Sell, Global attractors for the three-dimensional Navier-Stokes equations,, J. Dynamics Differential Equations, 8 (1996), 1.  doi: 10.1007/BF02218613.  Google Scholar

[9]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," 2nd edition,, Applied Mathematical Sciences, 68 (1997).   Google Scholar

[10]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis," 3rd edition,, Studies in Mathematics and its Applications, 2 (1984).   Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", Studies in Mathematics and its Applications, 25 (1992).   Google Scholar

[2]

X. Cai and Q. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping,, J. Math. Anal. Appl., 343 (2008), 799.  doi: 10.1016/j.jmaa.2008.01.041.  Google Scholar

[3]

A. Cheskidov and C. Foias, On global attractors of the 3D Navier-Stokes equations,, J. Diff. Eqns., 231 (2006), 714.  doi: 10.1016/j.jde.2006.08.021.  Google Scholar

[4]

N. J. Cutland, Global attractors for small samples and germs of 3D Navier-Stokes equations,, Nonlinear Anal., 62 (2005), 265.  doi: 10.1016/j.na.2005.02.114.  Google Scholar

[5]

A. V. Kapustyan and J. Valero, Weak and srong attractors for the 3D Navier-Stokes system,, J. Diff. Eqns., 240 (2007), 249.  doi: 10.1016/j.jde.2007.06.008.  Google Scholar

[6]

J. C. Robinson, "Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,", Cambridge Texts in Applied Mathematics, (2001).   Google Scholar

[7]

R. Rosa, The global attractors for the 2D Navier-Stokes flow on some unbounded domains,, Nonlinear Anal., 32 (1998), 71.  doi: 10.1016/S0362-546X(97)00453-7.  Google Scholar

[8]

G. R. Sell, Global attractors for the three-dimensional Navier-Stokes equations,, J. Dynamics Differential Equations, 8 (1996), 1.  doi: 10.1007/BF02218613.  Google Scholar

[9]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," 2nd edition,, Applied Mathematical Sciences, 68 (1997).   Google Scholar

[10]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis," 3rd edition,, Studies in Mathematics and its Applications, 2 (1984).   Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[5]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[9]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[10]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[11]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[12]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[13]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[14]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[18]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[19]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[20]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]