Citation: |
[1] |
H. Attouch, "Variational Convergence for Functions and Operators," Pitman Publishing Limited, London, 1984. |
[2] |
W. E, X. Li and E. Vanden-Eijnden, Some recent progress in multiscale modeling, in "Multiscale Modelling and Simulation," Lect. Notes Comput. Sci. Eng., 39, 3-21, Springer, Berlin, 2004. |
[3] |
P. Imkeller and A. Monahan, editors, "Stochastic Climate Dynamics," a Special Issue in the journal Stoch. and Dyna., 2, 2002. |
[4] |
D. Givon, R. Kupferman and A. Stuart, Extracting macroscopic dynamics: Model problems and algorithms, Nonlinearity, 17 (2004), R55-R127.doi: 10.1088/0951-7715/17/6/R01. |
[5] |
H. Kesten and G. C. Papanicolaou, A limit theorem for turbulent diffusion, Commun. Math. Phys., 65 (1979), 97-128.doi: 10.1007/BF01225144. |
[6] |
G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," Cambridge University Press, 1992.doi: 10.1017/CBO9780511666223. |
[7] |
A. J. Roberts, A holistic finite difference approach models linear dynamics consistently, Mathematics of Computation, 72 (2003), 247-262. Available from: http://www.ams.org/mcom/2003-72-241/S0025-5718-02-01448-5.doi: 10.1090/S0025-5718-02-01448-5. |
[8] |
A. J. Roberts, A step towards holistic discretisation of stochastic partial differential equations, ANZIAM J., 45 (2003/04), C1-C15. Available from: http://anziamj.austms.org.au/V45/CTAC2003/Robe. |
[9] |
A. J. Roberts, Resolving the multitude of microscale interactions accurately models stochastic partial differential equations, LMS J. Computation and Math., 9 (2006), 193-221. Available from: http://www.lms.ac.uk/jcm/9/lms2005-032. |
[10] |
A. J. Roberts, Subgrid and interelement interactions affect discretisations of stochastically forced diffusion, ANZIAM J., 48 (2006/07), C169-C188. Available from: http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/36. |
[11] |
A. J. Roberts, Choose interelement coupling to preserve self-adjoint dynamics in multiscale modelling and computation, Applied Numerical Modelling, 60 (2010), 949-973. Available from: http://www.sciencedirect.com/science/article/pii/S0168927410001145 |
[12] |
Tony MacKenzie and A. J. Roberts, Holistic discretisation ensures fidelity to dynamics in two spatial dimensions, preprint, 2009. |
[13] |
J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.doi: 10.1007/BF01762360. |
[14] |
R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," Academic Press, 2003. |
[15] |
S. Engblom, L. Ferm, A. Hellander and P. Lötstedt, Simulation of stochastic reaction diffusion processes on unstructured meshes, preprint, 2008. Available from: http://arXiv.org/abs/0804.3288. |
[16] |
V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems," Springer-Verlag, Berlin, 1997. |
[17] |
W. Wang and J. Duan, A dynamical approximation for stochastic partial differential equations, J. Math. Phys., 48 (2007). |
[18] |
W. Wang and J. Duan, Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions, Comm. Math. Phys., 275 (2007), 163-186.doi: 10.1007/s00220-007-0301-8. |
[19] |
W. Wang and A. J. Roberts, Macroscopic reduction for stochastic reaction-diffusion equations, preprint, 2008. Available from: http://arxiv.org/abs/0812.1837. |
[20] |
W. Wang and A. J. Roberts, Average and deviation for slow-fast stochastic partial differential equations, preprint, 2008. Available from: http://arxiv.org/abs/0904.1462. |
[21] |
W. Wang and A. J. Roberts, Macroscopic discrete modelling of stochastic reaction-diffusion equations, preprint, 2009. |
[22] |
H. Watanabe, Averaging and fluctuations for parabolic equations with rapidly oscillating random coefficients, Probab. Th. Rel. Fields, 77 (1988), 359-378.doi: 10.1007/BF00319294. |
[23] |
E. Waymire and J. Duan, editors, "Probability and Partial Differential Equations in Modern Applied Mathematics," IMA, 140, Springer-Verlag, New York, 2005. |
[24] |
Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 43 (2005), 1363-1384.doi: 10.1137/040605278. |
[25] |
Q. Du and T. Zhang, Numerical approximation of some linear stochastic partial differential equations, SIAM J. Numer. Anal., 40 (2002), 1421-1445.doi: 10.1137/S0036142901387956. |