\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Periodic solutions of resonant systems with rapidly rotating nonlinearities

Abstract Related Papers Cited by
  • We obtain existence of $T$-periodic solutions to a second order system of ordinary differential equations of the form \[ u^{\prime\prime}+cu^{\prime}+g(u)=p \] where $c\in\mathbb{R},$ $p\in C(\mathbb{R},\mathbb{R}^{N})$ is $T$-periodic and has mean value zero, and $g\in C(\mathbb{R}^{N},\mathbb{R}^{N})$ is e.g. sublinear. In contrast with a well known result by Nirenberg [6], where it is assumed that the nonlinearity $g$ has non-zero uniform radial limits at infinity, our main result allows rapid rotations in $g$.
    Mathematics Subject Classification: Primary: 34B15; Secondary: 34C25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. M. Alonso, Nonexistence of periodic solutions for a damped pendulum equation, Differential Integral Equations, 10 (1997), 1141-1148.

    [2]

    R. Kannan and K. Nagle, Forced oscillations with rapidly vanishing nonlinearities, Proc. Amer. Math. Soc., 111 (1991), 385-393.doi: 10.1090/S0002-9939-1991-1028287-X.

    [3]

    R. Kannan and R. Ortega, Periodic solutions of pendulum-type equations, J. Differential Equations, 59 (1985), 123-144.

    [4]

    A. Lazer, On Schauder's Fixed point theorem and forced second-order nonlinear oscillations, J. Math. Anal. Appl., 21 (1968), 421-425.doi: 10.1016/0022-247X(68)90225-4.

    [5]

    J. Mawhin, An extension of a theorem of A. C. Lazer on forced nonlinear oscillations, J. Math. Anal. Appl., 40 (1972), 20-29.doi: 10.1016/0022-247X(72)90025-X.

    [6]

    L. Nirenberg, Generalized degree and nonlinear problems, in "Contributions to Nonlinear Functional Analysis" (E. H. Zarantonello ed.), Academic Press New York, (1971), 1-9.

    [7]

    R. Ortega, A counterexample for the damped pendulum equation, Acad. Roy. Belg. Bull. Cl. Sci., 73 (1987), 405-409.

    [8]

    R. Ortega and L. Sánchez, Periodic solutions of forced oscillators with several degrees of freedom, Bull. London Math. Soc., 34 (2002), 308-318.doi: 10.1112/S0024609301008748.

    [9]

    R. Ortega, E. Serra and M. Tarallo, Non-continuation of the periodic oscillations of a forced pendulum in the presence of friction, Proc. Amer. Math. Soc., 128 (2000), 2659-2665.doi: 10.1090/S0002-9939-00-05389-2.

    [10]

    D. Ruiz and J. R. Ward Jr., Some notes on periodic systems with linear part at resonance, Discrete and Continuous Dynamical Systems, 11 (2004), 337-350.doi: 10.3934/dcds.2004.11.337.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(69) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return