Advanced Search
Article Contents
Article Contents

On $C^0$-variational solutions for Hamilton-Jacobi equations

Abstract Related Papers Cited by
  • For evolutive Hamilton-Jacobi equations, we propose a refined definition of $C^0$-variational solution, adapted to Cauchy problems for continuous initial data. This weaker framework enables us to investigate the semigroup property for these solutions. In the case of $p$-convex Hamiltonians, when variational solutions are known to be identical to viscosity solutions, we verify directly the semigroup property by using minmax techniques. In the non-convex case, we construct a first explicit evolutive example where minmax and viscosity solutions are different. Provided the initial data allow for the separation of variables, we also detect the semigroup property for convex-concave Hamiltonians. In this case, and for general initial data, we finally give new upper and lower Hopf-type estimates for the variational solutions.
    Mathematics Subject Classification: Primary: 70H20, 35D30; Secondary: 37J05.


    \begin{equation} \\ \end{equation}
  • [1]

    B. Aebischer et al, "Symplectic Geometry," An introduction based on the seminar in Bern, 1992, Progress in Mathematics, 124, Birkhäuser Verlag, Basel, 1994.


    M. Bardi and S. Osher, The nonconvex multidimensional Riemann problem for Hamilton-Jacobi equations, SIAM J. Math. Anal., 22 (1991), 344-351.doi: 10.1137/0522022.


    M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations," Systems and Control: Foundations and Applications, Boston, MA: Birkhauser, 1997, xvii+570 pp.


    M. Bardi and S. Faggian, Hopf-type estimates and formulas for nonconvex nonconcave Hamilton-Jacobi equations, SIAM J. Math. Anal., 29 (1998), 1067-1086.doi: 10.1137/S0036141096309629.


    G. Barles, "Solutions de viscosité des équations de Hamilton-Jacobi," Springer, Paris, 1994.


    S. Benenti, "Symplectic Relations in Analytical Mechanics," Modern developments in analytical mechanics, Vol. I: Geometrical dynamics, Proc. IUTAM-ISIMM Symp., Torino, Italy, (1982), 39-91.


    O. Bernardi and F. Cardin, Minimax and viscosity solutions in the convex case, Commun. Pure Appl. Anal., 5 (2006), 793-812.doi: 10.3934/cpaa.2006.5.793.


    G. Capitanio, Caractérisation géométrique des solutions de minimax pour l'équation de Hamilton-Jacobi, Enseign. Math., 49 (2003), 3-34.


    F. Cardin, The global finite structure of generic envelope loci for Hamilton-Jacobi equations, J. Math. Phys., 43 (2002), 417-430.doi: 10.1063/1.1423400.


    F. Cardin and C. Viterbo, Commuting Hamiltonians and Hamilton-Jacobi multi-time equations, Duke Math. J., 144 (2008), 235-284.doi: 10.1215/00127094-2008-036.


    M. Chaperon, Lois de conservation et géométrie symplectique, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 345-348.


    M. Chaperon, "Familles génératrices," Cours l'école d'été Erasmus de Samos, Publication Erasmus de l'Université de Thessalonique, 1993.


    C. Golé, Optical Hamiltonians and symplectic twist maps, Phys. D, 71 (1994), 185-195.doi: 10.1016/0167-2789(94)90189-9.


    V. Humiliére, "Continuité en topologie symplectique," PhD Thesis, École Polytechnique, 2008.


    V. Humiliére, On some completions of the space of Hamiltonian maps, Bull. Soc. Math. France, 136 (2008), 373-404.


    T. Joukovskaia, "Singularités de minimax et solutions faibles d'équations aux dérivées partielles," PHD Thesis, Université Paris 7, 1993.


    L. D. Landau and E. M. Lifshits, "Theoretical Physics. Vol. I," Mechanics. Fourth edition, Moscow, 1988, 216 pp.


    L. D. Landau and E. M. Lifshits, "Theoretical Physics. Vol. III," Quantum mechanics. Eighth edition. Akademie-Verlag, Berlin, 1988, xiv+644 pp.


    P. Liebermann and C. M. Marle, "Symplectic Geometry and Analytical Mechanics," D. Reidel Publishing Co., Dordrecht 1987, xvi+526 pp.


    P. L. Lions, "Generalized Solutions of Hamilton-Jacobi Equations," Research Notes in Mathematics, 69, Boston - London - Melbourne: Pitman Advanced Publishing Program 1982, 317 pp.


    P. L. Lions and M. Nisio, A uniqueness result for the semigroup associated with the Hamilton-Jacobi-Bellman operator, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 273-276.doi: 10.3792/pjaa.58.273.


    P. L. Lions, Some properties of the viscosity semigroups for Hamilton-Jacobi equations, in "Nonlinear Differential Equations" (Granada, 1984), Res. Notes in Math., 132, Pitman, Boston, MA, (1985), 43-63.


    J. N. Mather and G. Forni, Action minimizing orbits in Hamiltonian systems, Transition to chaos in classical and quantum mechanics (Montecatini Terme, 1991), Lecture Notes in Math., 1589, Springer, Berlin, (1994), 92-186.


    D. McCaffrey, Graph selectors and viscosity solutions on Lagrangian manifolds, ESAIM Control Optim. Calc. Var., 12 (2006), 795-815.


    A. Ottolenghi and C. ViterboSolutions generalisees pour l'equation de Hamilton-Jacobi dans le cas d'evolution, Unpublished.


    G. P. Paternain, L. Polterovich and K. F. Siburg, Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry-Mather theory, Dedicated to Vladimir I. Arnold on the occasion of his 65th birthday. Mosc. Math. J., 3 (2003), 593-619.


    J. C. Sikorav, Sur les immersions lagrangiennes dans un fibré cotangent admettant une phase génératrice globale, C. R. Acad. Sci., Paris, t., 302, Sér. I, (1986), 119-122.


    J. C. Sikorav, Problémes d'intersections et de points fixes en géométrie hamiltonienne, Comment. Math. Helv. 62 (1987), 62-73.doi: 10.1007/BF02564438.


    D. Theret, "Utilisation des fonctions génératrices en géométrie symplectique globale," PhD Thesis. Université Paris 7, 1996.


    D. Theret, A complete proof of Viterbo's uniqueness theorem on generating functions, Topology and its Applications, 96 (1999), 249-266.doi: 10.1016/S0166-8641(98)00049-2.


    C. Viterbo, Symplectic topology as the geometry of generating functions, Mathematische Annalen, 292 (1992), 685-710.doi: 10.1007/BF01444643.


    C. Viterbo, Solutions d'équations d'Hamilton-Jacobi et géométrie symplectique, Sémin. Équ. Dériv. Partielles, Éc. Polytech., Cent. Math., Palaiseau Sémin, Exp. 22 (1996), 6 pp.


    C. Viterbo, Symplectic topology and Hamilton-Jacobi equations, Morse theoretic methods in nonlinear analysis and in symplectic topology, NATO Sci. Ser. II Math. Phys. Chem., 217, Springer, Dordrecht, (2006), 439-459.


    A. Weinstein, "Lectures on Symplectic Manifolds," Conference Board of the Mathematical Sciences, Regional Conference Series in Mathematics. Number 29. Providence, R. I.: AMS, 1977.

  • 加载中

Article Metrics

HTML views() PDF downloads(89) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint