June  2011, 31(2): 445-467. doi: 10.3934/dcds.2011.31.445

Exponential attractors for lattice dynamical systems in weighted spaces

1. 

221 Parker Hall, Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849

Received  June 2010 Revised  February 2011 Published  June 2011

We first present some sufficient conditions for the existence of exponential attractors for locally coupled lattice dynamical systems in weighted spaces of infinite sequences. Then we apply this result to discuss the existence of exponential attractors for first order lattice systems, partly dissipative lattice systems, and second order lattice systems in weighted spaces of infinite sequences.
Citation: Xiaoying Han. Exponential attractors for lattice dynamical systems in weighted spaces. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 445-467. doi: 10.3934/dcds.2011.31.445
References:
[1]

A. Y. Abdallah, Exponential attractors for first-order lattice dynamical systems,, J. Math. Anal. Appl., 339 (2008), 217.  doi: 10.1016/j.jmaa.2007.06.054.  Google Scholar

[2]

A. Y. Abdallah, Exponential attractors for second order lattice dynamical systems,, Commun. Pure Appl. Anal., 8 (2009), 803.  doi: 10.3934/cpaa.2009.8.803.  Google Scholar

[3]

A. V. Babin and B. Nicolaenko, Exponential attractors for reaction diffusion equations in unbounded domains,, J. Dyna. Diff. Eqs., 7 (1995), 567.  doi: 10.1007/BF02218725.  Google Scholar

[4]

P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems,, Internat. J. Bifurcation and Choas, 11 (2001), 143.  doi: 10.1142/S0218127401002031.  Google Scholar

[5]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", North-Holland, (1992).   Google Scholar

[6]

S. N. Chow, Lattice dynamical systems,, in, (2003), 1.   Google Scholar

[7]

D. N. Cheban and D. S. Fakeeh, Global attractors of infinite-dimensional dynamical systems, III,, Bull. Acad. Sci. Rep. Moldova Mat., 18-19 (1995), 18.   Google Scholar

[8]

Z. Dai and D. Ma, Exponential attractors of the nonlinear wave equations,, Chinese Science Bulletin, 43 (1998), 1331.  doi: 10.1007/BF02883676.  Google Scholar

[9]

L. Dung and B. Nicolaenko, Exponential attractors in Banach spaces,, J. Dyn. Diff. Eqs., 13 (2001), 791.  doi: 10.1023/A:1016676027666.  Google Scholar

[10]

A. Eden, C. Foias and V. Kalantarov, A remark on two constructions of exponential attractors for $\alpha $-contractions,, J. Dyn. Diff. Eqs., 10 (1998), 37.  doi: 10.1023/A:1022636328133.  Google Scholar

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, "Exponential Attractors for Dissipative Evolution Equation,", Research in Applied Mathematics 37, (1994).   Google Scholar

[12]

X. Fan, Exponential attractors for a first-order dissipative lattice dynamical systems,, J. Appl. Math., 2008 (2008), 1.  doi: 10.1155/2008/354652.  Google Scholar

[13]

X. Fan and H. Yang, Exponential attractor and its fractal dimension for a second order lattice dynamical system,, J. Math. Anal. Appl., 367 (2010), 350.  doi: 10.1016/j.jmaa.2009.11.003.  Google Scholar

[14]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", AMS, (1988).   Google Scholar

[15]

N. I. Karachalios and A. N. Yannacopoulos, Global existence and compact attractors for the discrete nonlinear Schrödinger equation,, J. Differential Equations, 217 (2005), 88.  doi: 10.1016/j.jde.2005.06.002.  Google Scholar

[16]

X. Li and D. Wang, Attractors for partly dissipative lattice dynamic systems in weighted spaces,, J. Math. Anal. Appl., 325 (2007), 141.  doi: 10.1016/j.jmaa.2006.01.054.  Google Scholar

[17]

X. Li and C. Zhong, Attractors for partly dissipative lattice dynamic systems in $l^2\times l^2$,, J. Computational and Applied Mathematics, 177 (2005), 159.  doi: 10.1016/j.cam.2004.09.014.  Google Scholar

[18]

R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics,", Springer, (1997).   Google Scholar

[19]

B. Wang, Dynamics of systems on infinite lattices,, J. Differential Equations, 221 (2006), 224.  doi: 10.1016/j.jde.2005.01.003.  Google Scholar

[20]

C. Zhao and S. Zhou, Sufficient conditions for the existence of exponential attractors for lattice systems and applications,, Acta Math. Sinica, 53 (2010), 233.   Google Scholar

[21]

X. Zhao and S. Zhou, Kernel sections for processes and nonautonomous lattice systems,, Disc. Cont. Dyn. Syst., 9 (2008), 763.  doi: 10.3934/dcdsb.2008.9.763.  Google Scholar

[22]

S. Zhou, Attractors for second order lattice dynamical systems,, J. Differential Equations, 179 (2002), 605.  doi: 10.1006/jdeq.2001.4032.  Google Scholar

[23]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems,, J. Differential Equations, 224 (2006), 172.  doi: 10.1016/j.jde.2005.06.024.  Google Scholar

show all references

References:
[1]

A. Y. Abdallah, Exponential attractors for first-order lattice dynamical systems,, J. Math. Anal. Appl., 339 (2008), 217.  doi: 10.1016/j.jmaa.2007.06.054.  Google Scholar

[2]

A. Y. Abdallah, Exponential attractors for second order lattice dynamical systems,, Commun. Pure Appl. Anal., 8 (2009), 803.  doi: 10.3934/cpaa.2009.8.803.  Google Scholar

[3]

A. V. Babin and B. Nicolaenko, Exponential attractors for reaction diffusion equations in unbounded domains,, J. Dyna. Diff. Eqs., 7 (1995), 567.  doi: 10.1007/BF02218725.  Google Scholar

[4]

P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems,, Internat. J. Bifurcation and Choas, 11 (2001), 143.  doi: 10.1142/S0218127401002031.  Google Scholar

[5]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", North-Holland, (1992).   Google Scholar

[6]

S. N. Chow, Lattice dynamical systems,, in, (2003), 1.   Google Scholar

[7]

D. N. Cheban and D. S. Fakeeh, Global attractors of infinite-dimensional dynamical systems, III,, Bull. Acad. Sci. Rep. Moldova Mat., 18-19 (1995), 18.   Google Scholar

[8]

Z. Dai and D. Ma, Exponential attractors of the nonlinear wave equations,, Chinese Science Bulletin, 43 (1998), 1331.  doi: 10.1007/BF02883676.  Google Scholar

[9]

L. Dung and B. Nicolaenko, Exponential attractors in Banach spaces,, J. Dyn. Diff. Eqs., 13 (2001), 791.  doi: 10.1023/A:1016676027666.  Google Scholar

[10]

A. Eden, C. Foias and V. Kalantarov, A remark on two constructions of exponential attractors for $\alpha $-contractions,, J. Dyn. Diff. Eqs., 10 (1998), 37.  doi: 10.1023/A:1022636328133.  Google Scholar

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, "Exponential Attractors for Dissipative Evolution Equation,", Research in Applied Mathematics 37, (1994).   Google Scholar

[12]

X. Fan, Exponential attractors for a first-order dissipative lattice dynamical systems,, J. Appl. Math., 2008 (2008), 1.  doi: 10.1155/2008/354652.  Google Scholar

[13]

X. Fan and H. Yang, Exponential attractor and its fractal dimension for a second order lattice dynamical system,, J. Math. Anal. Appl., 367 (2010), 350.  doi: 10.1016/j.jmaa.2009.11.003.  Google Scholar

[14]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", AMS, (1988).   Google Scholar

[15]

N. I. Karachalios and A. N. Yannacopoulos, Global existence and compact attractors for the discrete nonlinear Schrödinger equation,, J. Differential Equations, 217 (2005), 88.  doi: 10.1016/j.jde.2005.06.002.  Google Scholar

[16]

X. Li and D. Wang, Attractors for partly dissipative lattice dynamic systems in weighted spaces,, J. Math. Anal. Appl., 325 (2007), 141.  doi: 10.1016/j.jmaa.2006.01.054.  Google Scholar

[17]

X. Li and C. Zhong, Attractors for partly dissipative lattice dynamic systems in $l^2\times l^2$,, J. Computational and Applied Mathematics, 177 (2005), 159.  doi: 10.1016/j.cam.2004.09.014.  Google Scholar

[18]

R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics,", Springer, (1997).   Google Scholar

[19]

B. Wang, Dynamics of systems on infinite lattices,, J. Differential Equations, 221 (2006), 224.  doi: 10.1016/j.jde.2005.01.003.  Google Scholar

[20]

C. Zhao and S. Zhou, Sufficient conditions for the existence of exponential attractors for lattice systems and applications,, Acta Math. Sinica, 53 (2010), 233.   Google Scholar

[21]

X. Zhao and S. Zhou, Kernel sections for processes and nonautonomous lattice systems,, Disc. Cont. Dyn. Syst., 9 (2008), 763.  doi: 10.3934/dcdsb.2008.9.763.  Google Scholar

[22]

S. Zhou, Attractors for second order lattice dynamical systems,, J. Differential Equations, 179 (2002), 605.  doi: 10.1006/jdeq.2001.4032.  Google Scholar

[23]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems,, J. Differential Equations, 224 (2006), 172.  doi: 10.1016/j.jde.2005.06.024.  Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[4]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[5]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[6]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[7]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[8]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[9]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[10]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[13]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[14]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[15]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[16]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[17]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[18]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[19]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[20]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]