June  2011, 31(2): 559-579. doi: 10.3934/dcds.2011.31.559

On some exotic Schottky groups

1. 

Laboratoire de Mathématiques et Physique Théorique, Université Fran¸cois-Rabelais Tours, Fédération Denis Poisson - CNRS, Parc de Grandmont, 37200 Tours, France

Received  May 2010 Revised  February 2011 Published  June 2011

We construct a Cartan-Hadamard manifold with pinched negative curvature whose group of isometries possesses divergent discrete free subgroups with parabolic elements that do not satisfy the so-called "parabolic gap condition'' introduced in [4]. This construction relies on the comparaison between the Poincaré series of these free groups and the potential of some transfer operator which appears naturally in this context.
Citation: Marc Peigné. On some exotic Schottky groups. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 559-579. doi: 10.3934/dcds.2011.31.559
References:
[1]

M. Babillot and M. Peigné, Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps,, Bull. Soc. Math. France, 134 (2006), 119.   Google Scholar

[2]

M. Bourdon, Structure conforme au bord et flot géodésique d'un CAT(-1)-espace,, Enseign. Math., 41 (1995), 63.   Google Scholar

[3]

K. Corlette and A. Iozzi, Limit sets of discrete groups of isometries of exotic hyperbolic spaces,, Trans. Amer. Math. Soc., 351 (1999), 1507.  doi: 10.1090/S0002-9947-99-02113-3.  Google Scholar

[4]

F. Dal'bo, J.-P. Otal and M. Peigné, Séries de Poincaré des groupes géométriquement finis,, Israel Jour. Math., 118 (2000), 109.   Google Scholar

[5]

F. Dal'bo, M. Peigné, J. C. Picaud and A. Sambusetti, On the growth of non-uniform lattices in pinched negatively curved manifolds,, J. Reine Angew. Math., 627 (2009), 31.   Google Scholar

[6]

P. Eberlein, "Geometry of Non Positively Curved Manifolds,", Chicago Lectures in Mathematics., ().   Google Scholar

[7]

E. Ghys and P. de la Harpe, "Sur les groupes hyperboliques d'aprés Mickael Gromov (Bern 1988)", Progress Math., (1990).   Google Scholar

[8]

V. Kaïmanovitch, Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds,, Ann. IHP., 53 (1900), 361.   Google Scholar

[9]

J. P. Otal and M. Peigné, Principe variationnel et groupes kleiniens,, Duke Math. Journal, 125 (2004), 15.  doi: 10.1215/S0012-7094-04-12512-6.  Google Scholar

[10]

M. Peigné, On the Patterson-Sullivan measure of some discrete group of isometries,, Israel J. Math., 133 (2003), 77.  doi: 10.1007/BF02773062.  Google Scholar

[11]

J. G. Ratcliffe, "Foundations of Hyperbolic Manifolds,", 2nd Edition, (2006).   Google Scholar

[12]

Th. Roblin, Ergodicité et équidistribution en courbure négative,, Mém. Soc. Math. Fr. (N.S.), 95 (2003).   Google Scholar

[13]

B. Schapira, "Propriétés ergodiques du feuilletage horosphérique d'une variété à courbure négative,", Ph.D thesis, (2003).   Google Scholar

[14]

D. Sullivan, The density at infinity of a discrete group of hyperbolic motions,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 171.   Google Scholar

[15]

D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups,, Acta Math., 153 (1984), 259.  doi: 10.1007/BF02392379.  Google Scholar

[16]

C. Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature,, Trans. Amer. Math. Soc., 348 (1996), 4965.  doi: 10.1090/S0002-9947-96-01614-5.  Google Scholar

show all references

References:
[1]

M. Babillot and M. Peigné, Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps,, Bull. Soc. Math. France, 134 (2006), 119.   Google Scholar

[2]

M. Bourdon, Structure conforme au bord et flot géodésique d'un CAT(-1)-espace,, Enseign. Math., 41 (1995), 63.   Google Scholar

[3]

K. Corlette and A. Iozzi, Limit sets of discrete groups of isometries of exotic hyperbolic spaces,, Trans. Amer. Math. Soc., 351 (1999), 1507.  doi: 10.1090/S0002-9947-99-02113-3.  Google Scholar

[4]

F. Dal'bo, J.-P. Otal and M. Peigné, Séries de Poincaré des groupes géométriquement finis,, Israel Jour. Math., 118 (2000), 109.   Google Scholar

[5]

F. Dal'bo, M. Peigné, J. C. Picaud and A. Sambusetti, On the growth of non-uniform lattices in pinched negatively curved manifolds,, J. Reine Angew. Math., 627 (2009), 31.   Google Scholar

[6]

P. Eberlein, "Geometry of Non Positively Curved Manifolds,", Chicago Lectures in Mathematics., ().   Google Scholar

[7]

E. Ghys and P. de la Harpe, "Sur les groupes hyperboliques d'aprés Mickael Gromov (Bern 1988)", Progress Math., (1990).   Google Scholar

[8]

V. Kaïmanovitch, Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds,, Ann. IHP., 53 (1900), 361.   Google Scholar

[9]

J. P. Otal and M. Peigné, Principe variationnel et groupes kleiniens,, Duke Math. Journal, 125 (2004), 15.  doi: 10.1215/S0012-7094-04-12512-6.  Google Scholar

[10]

M. Peigné, On the Patterson-Sullivan measure of some discrete group of isometries,, Israel J. Math., 133 (2003), 77.  doi: 10.1007/BF02773062.  Google Scholar

[11]

J. G. Ratcliffe, "Foundations of Hyperbolic Manifolds,", 2nd Edition, (2006).   Google Scholar

[12]

Th. Roblin, Ergodicité et équidistribution en courbure négative,, Mém. Soc. Math. Fr. (N.S.), 95 (2003).   Google Scholar

[13]

B. Schapira, "Propriétés ergodiques du feuilletage horosphérique d'une variété à courbure négative,", Ph.D thesis, (2003).   Google Scholar

[14]

D. Sullivan, The density at infinity of a discrete group of hyperbolic motions,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 171.   Google Scholar

[15]

D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups,, Acta Math., 153 (1984), 259.  doi: 10.1007/BF02392379.  Google Scholar

[16]

C. Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature,, Trans. Amer. Math. Soc., 348 (1996), 4965.  doi: 10.1090/S0002-9947-96-01614-5.  Google Scholar

[1]

Xin Zhang. The gap distribution of directions in some Schottky groups. Journal of Modern Dynamics, 2017, 11: 477-499. doi: 10.3934/jmd.2017019

[2]

Ludovic Rifford. Ricci curvatures in Carnot groups. Mathematical Control & Related Fields, 2013, 3 (4) : 467-487. doi: 10.3934/mcrf.2013.3.467

[3]

Neal Koblitz, Alfred Menezes. Another look at generic groups. Advances in Mathematics of Communications, 2007, 1 (1) : 13-28. doi: 10.3934/amc.2007.1.13

[4]

Sergei V. Ivanov. On aspherical presentations of groups. Electronic Research Announcements, 1998, 4: 109-114.

[5]

Benjamin Weiss. Entropy and actions of sofic groups. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3375-3383. doi: 10.3934/dcdsb.2015.20.3375

[6]

Robert McOwen, Peter Topalov. Groups of asymptotic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6331-6377. doi: 10.3934/dcds.2016075

[7]

Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725

[8]

Elon Lindenstrauss. Pointwise theorems for amenable groups. Electronic Research Announcements, 1999, 5: 82-90.

[9]

Hans Ulrich Besche, Bettina Eick and E. A. O'Brien. The groups of order at most 2000. Electronic Research Announcements, 2001, 7: 1-4.

[10]

Światosław R. Gal, Jarek Kędra. On distortion in groups of homeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 609-622. doi: 10.3934/jmd.2011.5.609

[11]

Uri Bader, Alex Furman. Boundaries, Weyl groups, and Superrigidity. Electronic Research Announcements, 2012, 19: 41-48. doi: 10.3934/era.2012.19.41

[12]

Martin Kassabov. Symmetric groups and expanders. Electronic Research Announcements, 2005, 11: 47-56.

[13]

André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351

[14]

Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517

[15]

Eduard Duryev, Charles Fougeron, Selim Ghazouani. Dilation surfaces and their Veech groups. Journal of Modern Dynamics, 2019, 14: 121-151. doi: 10.3934/jmd.2019005

[16]

Paul Skerritt, Cornelia Vizman. Dual pairs for matrix groups. Journal of Geometric Mechanics, 2019, 11 (2) : 255-275. doi: 10.3934/jgm.2019014

[17]

Emmanuel Breuillard, Ben Green, Terence Tao. Linear approximate groups. Electronic Research Announcements, 2010, 17: 57-67. doi: 10.3934/era.2010.17.57

[18]

Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191

[19]

David Mieczkowski. The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory. Journal of Modern Dynamics, 2007, 1 (1) : 61-92. doi: 10.3934/jmd.2007.1.61

[20]

Eldho K. Thomas, Nadya Markin, Frédérique Oggier. On Abelian group representability of finite groups. Advances in Mathematics of Communications, 2014, 8 (2) : 139-152. doi: 10.3934/amc.2014.8.139

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]