-
Previous Article
Extensive escape rate in lattices of weakly coupled expanding maps
- DCDS Home
- This Issue
-
Next Article
Explicit formula for the solution of the Szegö equation on the real line and applications
Homeomorphisms of the annulus with a transitive lift II
1. | Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Cidade Universitária, 05508-090 São Paulo, SP, Brazil |
References:
[1] |
S. Addas-Zanata and F. A. Tal, Homeomorphisms of the annulus with a transitive lift, to appear in Math. Z., 2010. |
[2] |
S. Alpern and V. Prasad, Typical recurrence for lifts of mean rotation zero annulus homeomorphisms, Bull. London Math. Soc., 23 (1991), 477-481.
doi: 10.1112/blms/23.5.477. |
[3] |
S. Alpern and V. Prasad, Typical transitivity for lifts of rotationless annulus or torus homeomorphisms, Bull. London Math. Soc., 27 (1995), 79-81.
doi: 10.1112/blms/27.1.79. |
[4] |
C. Bonatti and S. Crovisier, Récurrence et généricité, Invent. Math., 158 (2004), 33-104. |
show all references
References:
[1] |
S. Addas-Zanata and F. A. Tal, Homeomorphisms of the annulus with a transitive lift, to appear in Math. Z., 2010. |
[2] |
S. Alpern and V. Prasad, Typical recurrence for lifts of mean rotation zero annulus homeomorphisms, Bull. London Math. Soc., 23 (1991), 477-481.
doi: 10.1112/blms/23.5.477. |
[3] |
S. Alpern and V. Prasad, Typical transitivity for lifts of rotationless annulus or torus homeomorphisms, Bull. London Math. Soc., 27 (1995), 79-81.
doi: 10.1112/blms/27.1.79. |
[4] |
C. Bonatti and S. Crovisier, Récurrence et généricité, Invent. Math., 158 (2004), 33-104. |
[1] |
Dominique Lecomte. Hurewicz-like tests for Borel subsets of the plane. Electronic Research Announcements, 2005, 11: 95-102. |
[2] |
Alexander Blokh, Lex Oversteegen, Vladlen Timorin. Non-degenerate locally connected models for plane continua and Julia sets. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5781-5795. doi: 10.3934/dcds.2017251 |
[3] |
Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004 |
[4] |
Manuel Fernández-Martínez. A real attractor non admitting a connected feasible open set. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 723-725. doi: 10.3934/dcdss.2019046 |
[5] |
Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control and Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35 |
[6] |
Héctor A. Tabares-Ospina, Mauricio Osorio. Methodology for the characterization of the electrical power demand curve, by means of fractal orbit diagrams on the complex plane of Mandelbrot set. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1895-1905. doi: 10.3934/dcdsb.2020008 |
[7] |
John Banks, Brett Stanley. A note on equivalent definitions of topological transitivity. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1293-1296. doi: 10.3934/dcds.2013.33.1293 |
[8] |
Sergio Muñoz. Robust transitivity of maps of the real line. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1163-1177. doi: 10.3934/dcds.2015.35.1163 |
[9] |
Juan Luis García Guirao, Marek Lampart. Transitivity of a Lotka-Volterra map. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 75-82. doi: 10.3934/dcdsb.2008.9.75 |
[10] |
Changguang Dong. On density of infinite subsets I. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2343-2359. doi: 10.3934/dcds.2019099 |
[11] |
Kristian Bjerklöv, Russell Johnson. Minimal subsets of projective flows. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 493-516. doi: 10.3934/dcdsb.2008.9.493 |
[12] |
Giuseppe Buttazzo, Filippo Santambrogio. Asymptotical compliance optimization for connected networks. Networks and Heterogeneous Media, 2007, 2 (4) : 761-777. doi: 10.3934/nhm.2007.2.761 |
[13] |
Nina Lebedeva. Number of extremal subsets in Alexandrov spaces and rigidity. Electronic Research Announcements, 2014, 21: 120-125. doi: 10.3934/era.2014.21.120 |
[14] |
Ian Melbourne, V. Niţicâ, Andrei Török. A note about stable transitivity of noncompact extensions of hyperbolic systems. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 355-363. doi: 10.3934/dcds.2006.14.355 |
[15] |
Chris Good, Robert Leek, Joel Mitchell. Equicontinuity, transitivity and sensitivity: The Auslander-Yorke dichotomy revisited. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2441-2474. doi: 10.3934/dcds.2020121 |
[16] |
Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711 |
[17] |
Michel Laurent, Arnaldo Nogueira. Rotation number of contracted rotations. Journal of Modern Dynamics, 2018, 12: 175-191. doi: 10.3934/jmd.2018007 |
[18] |
Arek Goetz. Dynamics of a piecewise rotation. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 593-608. doi: 10.3934/dcds.1998.4.593 |
[19] |
Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169 |
[20] |
Eduardo Lara, Rodolfo Rodríguez, Pablo Venegas. Spectral approximation of the curl operator in multiply connected domains. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 235-253. doi: 10.3934/dcdss.2016.9.235 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]