-
Previous Article
On piecewise affine interval maps with countably many laps
- DCDS Home
- This Issue
-
Next Article
An example of rapid evolution of complex limit cycles
Homoclinic standing waves in focusing DNLS equations
1. | Universität des Saarlandes, FR Mathematik, Postfach 15 11 50, D-66041 Saarbrücken, Germany |
References:
[1] |
S. Aubry, Breathers in nonlinear lattices: Existence, linear stability and quantization, Lattice Dynamics (Paris, 1995), Physica D, 103 (1997), 201-250.
doi: 10.1016/S0167-2789(96)00261-8. |
[2] |
W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), 1674-1697.
doi: 10.1137/S1064827503422956. |
[3] |
J. Dorignac, J. Zhou and D. K. Campbell, Discrete breathers in nonlinear Schrödinger hypercubic lattices with arbitrary power nonlinearity, Physica D, 237 (2008), 486-504.
doi: 10.1016/j.physd.2007.09.018. |
[4] |
J. Ch. Eilbeck and M. Johansson, The discrete nonlinear Schrödinger equation - 20 years on, in Proceedings of the Third Conference on Localization and Energy Transfer in Nonlinear Systems 2002, 44-87, 2003. |
[5] |
J. C. Eilbeck, P. S. Lomdahl and A. C. Scott, The discrete self-trapping equation, Physica D, 16 (1985), 318-338.
doi: 10.1016/0167-2789(85)90012-0. |
[6] |
S. Flach, K. Kladko and R. S. MacKay, Energy thresholds for discrete breathers in one-, two-, and three-dimensional lattices, Phys. Rev. Lett., 78 (1987), 1207-1210.
doi: 10.1103/PhysRevLett.78.1207. |
[7] |
M. Herrmann, Heteroclinic standing waves in defocussing DNLS equations: Variational approach via energy minimization, Appl. Anal., 89 (2010), 1591-1602, arXiv:1002.1591. |
[8] |
P. G. Kevrekidis, "The Discrete Nonlinear Schrödinger Equation," Springer Tracts in Modern Physics, 232, Chapter 1, General Introduction and Derivation of the DNLS Equation, 3-9, Springer, Berlin, 2009. |
[9] |
P. G. Kevrekidis, "The Discrete Nonlinear Schrödinger Equation," Springer Tracts in Modern Physics, 232, Chapter 5, The Defocusing Case, 117-141. Springer, Berlin, 2009. |
[10] |
P. G. Kevrekidis, "The Discrete Nonlinear Schrödinger Equation," Springer Tracts in Modern Physics, 232, Chapter 2, The One-Dimensional Case, 3-9, Springer, Berlin, 2009. |
[11] |
P. G. Kevrekidis, K. Ø. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results, Int. J. Mod. Phys. B, 15 (2001), 2833-2900.
doi: 10.1142/S0217979201007105. |
[12] |
A. Khare, K. Ø. Rasmussen, M. R. Samuelsen and A. Saxena, Exact solutions of the saturable discrete nonlinear Schrödinger equation, J. Phys. A, 38 (2005), 807-814.
doi: 10.1088/0305-4470/38/4/002. |
[13] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145. |
[14] |
R. S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity, 7 (1994), 1623-1643.
doi: 10.1088/0951-7715/7/6/006. |
[15] |
A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity, 19 (2006), 27-40.
doi: 10.1088/0951-7715/19/1/002. |
[16] |
A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach, Discret. Contin. Dyn. Syst., 19 (2007), 419-430.
doi: 10.3934/dcds.2007.19.419. |
[17] |
A. Pankov and V. M. Rothos, Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), 3219-3236.
doi: 10.1098/rspa.2008.0255. |
[18] |
A. Pankov and N. Zakharchenko, On some discrete variational problems, Acta Appl. Math., 65 (2001), 295-303.
doi: 10.1023/A:1010655000447. |
[19] |
J. A. Pava, "Nonlinear Dispersive Equations. Existence and Stability of Solitary and Periodic Travelling Wave Solutions," Mathematical Surveys and Monographs, 156, American Mathematical Society, Providence, RI, 2009. |
[20] |
D. E. Pelinovsky, P. G. Kevrekidis and D. J. Frantzeskakis, Stability of discrete solitons in nonlinear Schrödinger lattices, Phys. D, 212 (2005), 1-19.
doi: 10.1016/j.physd.2005.07.021. |
[21] |
D. E. Pelinovsky and V. M. Rothos, Bifurcations of travelling wave solutions in the discrete NLS equations, Physica D, 202 (2005), 16-36.
doi: 10.1016/j.physd.2005.01.016. |
[22] |
M. A. Porter, Experimental results related to DNLS equations, in "The Discrete Nonlinear Schrödinger Equation" (ed. P. G. Kevrekidis), 175-189, Springer Tracts Modern Phys., 232, Springer, Berlin, 2009. |
[23] |
W.-X. Qin and X. Xiao, Homoclinic orbits and localized solutions in nonlinear Schrödinger lattices, Nonlinearity, 20 (2007), 2305-2317.
doi: 10.1088/0951-7715/20/10/002. |
[24] |
H. Shi and H. Zhang, Existence of gap solitons in periodic discrete nonlinear Schrödinger equations, J. Math. Anal. Appl., 361 (2010), 411-419.
doi: 10.1016/j.jmaa.2009.07.026. |
[25] |
C. A. Stuart, Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation, Milan J. Math., 76 (2008), 329-399.
doi: 10.1007/s00032-008-0089-9. |
[26] |
M. I. Weinstein, Excitation thresholds for nonlinear localized modes on lattices, Nonlinearity, 12 (1999), 673-691.
doi: 10.1088/0951-7715/12/3/314. |
[27] |
M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.
doi: 10.1002/cpa.3160390103. |
[28] |
J. Yang and T. I. Lakoba, Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations, Stud. Appl. Math., 118 (2007), 153-197.
doi: 10.1111/j.1467-9590.2007.00371.x. |
[29] |
G. Zhang and F. Liu, Existence of breather solutions of the DNLS equations with unbounded potentials, Nonlinear Anal.-Theory Methods Appl., 71 (2009), e786-e792.
doi: 10.1016/j.na.2008.11.071. |
[30] |
G. Zhang and A. Pankov, Standing wave solutions of the discrete non-linear Schrödinger equations with unbounded potentials, to appear in Applicable Analysis, 2009. |
show all references
References:
[1] |
S. Aubry, Breathers in nonlinear lattices: Existence, linear stability and quantization, Lattice Dynamics (Paris, 1995), Physica D, 103 (1997), 201-250.
doi: 10.1016/S0167-2789(96)00261-8. |
[2] |
W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004), 1674-1697.
doi: 10.1137/S1064827503422956. |
[3] |
J. Dorignac, J. Zhou and D. K. Campbell, Discrete breathers in nonlinear Schrödinger hypercubic lattices with arbitrary power nonlinearity, Physica D, 237 (2008), 486-504.
doi: 10.1016/j.physd.2007.09.018. |
[4] |
J. Ch. Eilbeck and M. Johansson, The discrete nonlinear Schrödinger equation - 20 years on, in Proceedings of the Third Conference on Localization and Energy Transfer in Nonlinear Systems 2002, 44-87, 2003. |
[5] |
J. C. Eilbeck, P. S. Lomdahl and A. C. Scott, The discrete self-trapping equation, Physica D, 16 (1985), 318-338.
doi: 10.1016/0167-2789(85)90012-0. |
[6] |
S. Flach, K. Kladko and R. S. MacKay, Energy thresholds for discrete breathers in one-, two-, and three-dimensional lattices, Phys. Rev. Lett., 78 (1987), 1207-1210.
doi: 10.1103/PhysRevLett.78.1207. |
[7] |
M. Herrmann, Heteroclinic standing waves in defocussing DNLS equations: Variational approach via energy minimization, Appl. Anal., 89 (2010), 1591-1602, arXiv:1002.1591. |
[8] |
P. G. Kevrekidis, "The Discrete Nonlinear Schrödinger Equation," Springer Tracts in Modern Physics, 232, Chapter 1, General Introduction and Derivation of the DNLS Equation, 3-9, Springer, Berlin, 2009. |
[9] |
P. G. Kevrekidis, "The Discrete Nonlinear Schrödinger Equation," Springer Tracts in Modern Physics, 232, Chapter 5, The Defocusing Case, 117-141. Springer, Berlin, 2009. |
[10] |
P. G. Kevrekidis, "The Discrete Nonlinear Schrödinger Equation," Springer Tracts in Modern Physics, 232, Chapter 2, The One-Dimensional Case, 3-9, Springer, Berlin, 2009. |
[11] |
P. G. Kevrekidis, K. Ø. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results, Int. J. Mod. Phys. B, 15 (2001), 2833-2900.
doi: 10.1142/S0217979201007105. |
[12] |
A. Khare, K. Ø. Rasmussen, M. R. Samuelsen and A. Saxena, Exact solutions of the saturable discrete nonlinear Schrödinger equation, J. Phys. A, 38 (2005), 807-814.
doi: 10.1088/0305-4470/38/4/002. |
[13] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145. |
[14] |
R. S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity, 7 (1994), 1623-1643.
doi: 10.1088/0951-7715/7/6/006. |
[15] |
A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity, 19 (2006), 27-40.
doi: 10.1088/0951-7715/19/1/002. |
[16] |
A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach, Discret. Contin. Dyn. Syst., 19 (2007), 419-430.
doi: 10.3934/dcds.2007.19.419. |
[17] |
A. Pankov and V. M. Rothos, Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), 3219-3236.
doi: 10.1098/rspa.2008.0255. |
[18] |
A. Pankov and N. Zakharchenko, On some discrete variational problems, Acta Appl. Math., 65 (2001), 295-303.
doi: 10.1023/A:1010655000447. |
[19] |
J. A. Pava, "Nonlinear Dispersive Equations. Existence and Stability of Solitary and Periodic Travelling Wave Solutions," Mathematical Surveys and Monographs, 156, American Mathematical Society, Providence, RI, 2009. |
[20] |
D. E. Pelinovsky, P. G. Kevrekidis and D. J. Frantzeskakis, Stability of discrete solitons in nonlinear Schrödinger lattices, Phys. D, 212 (2005), 1-19.
doi: 10.1016/j.physd.2005.07.021. |
[21] |
D. E. Pelinovsky and V. M. Rothos, Bifurcations of travelling wave solutions in the discrete NLS equations, Physica D, 202 (2005), 16-36.
doi: 10.1016/j.physd.2005.01.016. |
[22] |
M. A. Porter, Experimental results related to DNLS equations, in "The Discrete Nonlinear Schrödinger Equation" (ed. P. G. Kevrekidis), 175-189, Springer Tracts Modern Phys., 232, Springer, Berlin, 2009. |
[23] |
W.-X. Qin and X. Xiao, Homoclinic orbits and localized solutions in nonlinear Schrödinger lattices, Nonlinearity, 20 (2007), 2305-2317.
doi: 10.1088/0951-7715/20/10/002. |
[24] |
H. Shi and H. Zhang, Existence of gap solitons in periodic discrete nonlinear Schrödinger equations, J. Math. Anal. Appl., 361 (2010), 411-419.
doi: 10.1016/j.jmaa.2009.07.026. |
[25] |
C. A. Stuart, Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation, Milan J. Math., 76 (2008), 329-399.
doi: 10.1007/s00032-008-0089-9. |
[26] |
M. I. Weinstein, Excitation thresholds for nonlinear localized modes on lattices, Nonlinearity, 12 (1999), 673-691.
doi: 10.1088/0951-7715/12/3/314. |
[27] |
M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.
doi: 10.1002/cpa.3160390103. |
[28] |
J. Yang and T. I. Lakoba, Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations, Stud. Appl. Math., 118 (2007), 153-197.
doi: 10.1111/j.1467-9590.2007.00371.x. |
[29] |
G. Zhang and F. Liu, Existence of breather solutions of the DNLS equations with unbounded potentials, Nonlinear Anal.-Theory Methods Appl., 71 (2009), e786-e792.
doi: 10.1016/j.na.2008.11.071. |
[30] |
G. Zhang and A. Pankov, Standing wave solutions of the discrete non-linear Schrödinger equations with unbounded potentials, to appear in Applicable Analysis, 2009. |
[1] |
Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193 |
[2] |
Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525 |
[3] |
François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229 |
[4] |
Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080 |
[5] |
Huifang Jia, Gongbao Li, Xiao Luo. Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2739-2766. doi: 10.3934/dcds.2020148 |
[6] |
Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073 |
[7] |
Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure and Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831 |
[8] |
Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007 |
[9] |
David Usero. Dark solitary waves in nonlocal nonlinear Schrödinger systems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1327-1340. doi: 10.3934/dcdss.2011.4.1327 |
[10] |
Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789 |
[11] |
Alex H. Ardila. Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field. Communications on Pure and Applied Analysis, 2018, 17 (1) : 163-175. doi: 10.3934/cpaa.2018010 |
[12] |
Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121 |
[13] |
Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure and Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843 |
[14] |
Nan Lu. Non-localized standing waves of the hyperbolic cubic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3533-3567. doi: 10.3934/dcds.2015.35.3533 |
[15] |
Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093 |
[16] |
Michal Fečkan, Vassilis M. Rothos. Travelling waves of forced discrete nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1129-1145. doi: 10.3934/dcdss.2011.4.1129 |
[17] |
Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313 |
[18] |
Jaeyoung Byeon, Louis Jeanjean. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 255-269. doi: 10.3934/dcds.2007.19.255 |
[19] |
Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827 |
[20] |
Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]