-
Previous Article
Pullback attractors for globally modified Navier-Stokes equations with infinite delays
- DCDS Home
- This Issue
-
Next Article
On piecewise affine interval maps with countably many laps
On the birth of minimal sets for perturbed reversible vector fields
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia |
2. | Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, 13083–859 Campinas, SP, Brazil, Brazil |
References:
[1] |
Acta Appl. Math., 70 (2002), 23-41.
doi: 10.1023/A:1013909812387. |
[2] |
Lecture Notes in Mathematics, 1645, Springer-Verlag, Berlin, 1996. |
[3] |
in "Real and Complex Singularities" (eds. M. Manoel, M. C. Romero Fuster and C. T. C. Wall), Cambridge University Press, (2010), 380, 46-70. Google Scholar |
[4] |
Transactions of the American Mathematical Society, 218 (1976), 89-113.
doi: 10.1090/S0002-9947-1976-0402815-3. |
[5] |
International J. of Theoretical Physics, 33 (1994), 1917-1928.
doi: 10.1007/BF00671033. |
[6] |
Applied Mathematical Sciences, 42, Springer-Verlag, New York, 1983. |
[7] |
Dover Publications, 2009. Google Scholar |
[8] |
Annali di Matematica Pura ed Applicata, 187 (2008), 105-117.
doi: 10.1007/s10231-006-0036-8. |
[9] |
J. Dynam. Differential Equations, 8 (1996), 71-102. |
[10] |
Bull. Braz. Math. Soc. (N.S.), 40 (2009), 511-537. |
[11] |
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 20 (2010), 3341-3344.
doi: 10.1142/S0218127410027738. |
[12] |
Communications on Pure and Applied Analysis, 10 (2011), 1257-1266. Google Scholar |
[13] |
in "Hamiltonian Systems with Three or More Degrees of Freedom" (S'Agaró, 1995) (ed. C. Simó), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533, Kluwer Acad. Publ., Dordrecht, (1999), 489-493. |
[14] |
2nd edition, Applied Mathematical Sciences, 59, Springer, New York, 2007. |
[15] |
Chaos, 1 (1991), 160-167.
doi: 10.1063/1.165858. |
[16] |
Phys. D, 112 (1998), 132-147.
doi: 10.1016/S0167-2789(97)00207-8. |
[17] |
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 7 (1997), 569-584.
doi: 10.1142/S0218127497000406. |
[18] |
Res. Notes in Math., 75, Pitman (Advanced Publishing Program), Boston, MA, 1982. |
[19] |
Universitext, Springer-Verlag, Berlin, 1990. |
[20] |
Ph.D. thesis, University Ilmenau, 1999. Google Scholar |
show all references
References:
[1] |
Acta Appl. Math., 70 (2002), 23-41.
doi: 10.1023/A:1013909812387. |
[2] |
Lecture Notes in Mathematics, 1645, Springer-Verlag, Berlin, 1996. |
[3] |
in "Real and Complex Singularities" (eds. M. Manoel, M. C. Romero Fuster and C. T. C. Wall), Cambridge University Press, (2010), 380, 46-70. Google Scholar |
[4] |
Transactions of the American Mathematical Society, 218 (1976), 89-113.
doi: 10.1090/S0002-9947-1976-0402815-3. |
[5] |
International J. of Theoretical Physics, 33 (1994), 1917-1928.
doi: 10.1007/BF00671033. |
[6] |
Applied Mathematical Sciences, 42, Springer-Verlag, New York, 1983. |
[7] |
Dover Publications, 2009. Google Scholar |
[8] |
Annali di Matematica Pura ed Applicata, 187 (2008), 105-117.
doi: 10.1007/s10231-006-0036-8. |
[9] |
J. Dynam. Differential Equations, 8 (1996), 71-102. |
[10] |
Bull. Braz. Math. Soc. (N.S.), 40 (2009), 511-537. |
[11] |
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 20 (2010), 3341-3344.
doi: 10.1142/S0218127410027738. |
[12] |
Communications on Pure and Applied Analysis, 10 (2011), 1257-1266. Google Scholar |
[13] |
in "Hamiltonian Systems with Three or More Degrees of Freedom" (S'Agaró, 1995) (ed. C. Simó), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533, Kluwer Acad. Publ., Dordrecht, (1999), 489-493. |
[14] |
2nd edition, Applied Mathematical Sciences, 59, Springer, New York, 2007. |
[15] |
Chaos, 1 (1991), 160-167.
doi: 10.1063/1.165858. |
[16] |
Phys. D, 112 (1998), 132-147.
doi: 10.1016/S0167-2789(97)00207-8. |
[17] |
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 7 (1997), 569-584.
doi: 10.1142/S0218127497000406. |
[18] |
Res. Notes in Math., 75, Pitman (Advanced Publishing Program), Boston, MA, 1982. |
[19] |
Universitext, Springer-Verlag, Berlin, 1990. |
[20] |
Ph.D. thesis, University Ilmenau, 1999. Google Scholar |
[1] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[2] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[3] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003 |
[4] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[5] |
Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037 |
[6] |
Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026 |
[7] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[8] |
Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021008 |
[9] |
Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045 |
[10] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[11] |
Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238 |
[12] |
Wen Si. Response solutions for degenerate reversible harmonic oscillators. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3951-3972. doi: 10.3934/dcds.2021023 |
[13] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[14] |
Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225 |
[15] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[16] |
Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226 |
[17] |
Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021053 |
[18] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[19] |
Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023 |
[20] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]