September  2011, 31(3): 779-796. doi: 10.3934/dcds.2011.31.779

Pullback attractors for globally modified Navier-Stokes equations with infinite delays

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080–Sevilla, Spain

3. 

Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

Received  December 2009 Revised  June 2011 Published  August 2011

We establish the existence of pullback attractors for the dynamical system associated to a globally modified model of the Navier-Stokes equations containing delay operators with infinite delay in a suitable weighted space. Actually, we are able to prove the existence of attractors in different classes of universes, one is the classical of fixed bounded sets, and the other is given by a tempered condition. Relationship between these two kind of objects is also analyzed.
Citation: Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems, 2011, 31 (3) : 779-796. doi: 10.3934/dcds.2011.31.779
References:
[1]

Advanced Nonlinear Studies, 6 (2006), 411-436.  Google Scholar

[2]

Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 761-781. doi: 10.3934/dcdsb.2008.10.761.  Google Scholar

[3]

Advanced Nonlinear Studies, 6 (2006), 411-436, Adv. Nonlinear Stud., 10 (2010), 245-247.  Google Scholar

[4]

Nonlinear Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.  Google Scholar

[5]

C. R. Acad. Sci. Paris, 342 (2006), 263-268.  Google Scholar

[6]

J. Differential Equations, 239 (2007), 311-342.  Google Scholar

[7]

Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2869-2883.  Google Scholar

[8]

R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453. doi: 10.1098/rspa.2001.0807.  Google Scholar

[9]

R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194. doi: 10.1098/rspa.2003.1166.  Google Scholar

[10]

J. Differential Equations, 205 (2004), 271-297.  Google Scholar

[11]

J. Dynam. Differential Equations, 9 (1997), 307-341.  Google Scholar

[12]

in "Handbook of Mathematical Fluid Dynamics," Vol. II, 117-141, North-Holland, Amsterdam, 2003. doi: 10.1016/S1874-5792(03)80006-X.  Google Scholar

[13]

Commun. Math. Phys., 171 (1995), 119-141. doi: 10.1007/BF02104513.  Google Scholar

[14]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D Navier-Stokes equations and their tempered behaviour,, submitted., ().   Google Scholar

[15]

Nonlinear Anal., 64 (2006), 1100-1118. doi: 10.1016/j.na.2005.05.057.  Google Scholar

[16]

Funkcial. Ekvac., 21 (1978), 11-41.  Google Scholar

[17]

Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991.  Google Scholar

[18]

in "Mathematical Problems in Engineering Aerospace and Sciences" (eds. S. Sivasundaram, J. Vasundhara Devi, Zahia Drici and Farzana Mcrae), Vol. 3, Chapter 2, Cambridge Scientific Publishers, 2009. Google Scholar

[19]

Commun. Pure Appl. Anal., 6 (2007), 937-955. doi: 10.3934/cpaa.2007.6.937.  Google Scholar

[20]

Commun. Pure Appl. Anal., 8 (2009), 785-802. doi: 10.3934/cpaa.2009.8.785.  Google Scholar

[21]

Proc. Roy. Soc. London Ser. A Math Phys. Eng. Sci., 463 (2007), 1491-1508.  Google Scholar

[22]

Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[23]

Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 655-673. doi: 10.3934/dcdsb.2010.14.655.  Google Scholar

[24]

P. Marín-Rubio, A. M. Márquez-Durán and J. Real, On the convergence of solutions of Globally Modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays,, Adv. Nonlinear Stud., ().   Google Scholar

[25]

Nonlinear Anal., 67 (2007), 2784-2799. doi: 10.1016/j.na.2006.09.035.  Google Scholar

[26]

Nonlinear Anal., 71 (2009), 3956-3963. doi: 10.1016/j.na.2009.02.065.  Google Scholar

[27]

Nonlinear Anal., 74 (2011), 2012-2030. doi: 10.1016/j.na.2010.11.008.  Google Scholar

[28]

Stoch. Dyn., 3 (2003), 279-297. doi: 10.1142/S0219493703000772.  Google Scholar

[29]

Adv. Nonlinear Stud., 9 (2009), 425-427.  Google Scholar

[30]

Theory and Numerical Analysis, Revised edition, Studies in Mathematics and its Applications, 2, North Holland Publishig Co., Amsterdam-New York, 1979.  Google Scholar

[31]

Second Edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 66, SIAM, Philadelphia, PA, 1995.  Google Scholar

[32]

Comm. in Partial Differential Equations, 9 (1984), 215-230.  Google Scholar

show all references

References:
[1]

Advanced Nonlinear Studies, 6 (2006), 411-436.  Google Scholar

[2]

Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 761-781. doi: 10.3934/dcdsb.2008.10.761.  Google Scholar

[3]

Advanced Nonlinear Studies, 6 (2006), 411-436, Adv. Nonlinear Stud., 10 (2010), 245-247.  Google Scholar

[4]

Nonlinear Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.  Google Scholar

[5]

C. R. Acad. Sci. Paris, 342 (2006), 263-268.  Google Scholar

[6]

J. Differential Equations, 239 (2007), 311-342.  Google Scholar

[7]

Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2869-2883.  Google Scholar

[8]

R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453. doi: 10.1098/rspa.2001.0807.  Google Scholar

[9]

R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194. doi: 10.1098/rspa.2003.1166.  Google Scholar

[10]

J. Differential Equations, 205 (2004), 271-297.  Google Scholar

[11]

J. Dynam. Differential Equations, 9 (1997), 307-341.  Google Scholar

[12]

in "Handbook of Mathematical Fluid Dynamics," Vol. II, 117-141, North-Holland, Amsterdam, 2003. doi: 10.1016/S1874-5792(03)80006-X.  Google Scholar

[13]

Commun. Math. Phys., 171 (1995), 119-141. doi: 10.1007/BF02104513.  Google Scholar

[14]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors in $V$ for non-autonomous 2D Navier-Stokes equations and their tempered behaviour,, submitted., ().   Google Scholar

[15]

Nonlinear Anal., 64 (2006), 1100-1118. doi: 10.1016/j.na.2005.05.057.  Google Scholar

[16]

Funkcial. Ekvac., 21 (1978), 11-41.  Google Scholar

[17]

Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991.  Google Scholar

[18]

in "Mathematical Problems in Engineering Aerospace and Sciences" (eds. S. Sivasundaram, J. Vasundhara Devi, Zahia Drici and Farzana Mcrae), Vol. 3, Chapter 2, Cambridge Scientific Publishers, 2009. Google Scholar

[19]

Commun. Pure Appl. Anal., 6 (2007), 937-955. doi: 10.3934/cpaa.2007.6.937.  Google Scholar

[20]

Commun. Pure Appl. Anal., 8 (2009), 785-802. doi: 10.3934/cpaa.2009.8.785.  Google Scholar

[21]

Proc. Roy. Soc. London Ser. A Math Phys. Eng. Sci., 463 (2007), 1491-1508.  Google Scholar

[22]

Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[23]

Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 655-673. doi: 10.3934/dcdsb.2010.14.655.  Google Scholar

[24]

P. Marín-Rubio, A. M. Márquez-Durán and J. Real, On the convergence of solutions of Globally Modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays,, Adv. Nonlinear Stud., ().   Google Scholar

[25]

Nonlinear Anal., 67 (2007), 2784-2799. doi: 10.1016/j.na.2006.09.035.  Google Scholar

[26]

Nonlinear Anal., 71 (2009), 3956-3963. doi: 10.1016/j.na.2009.02.065.  Google Scholar

[27]

Nonlinear Anal., 74 (2011), 2012-2030. doi: 10.1016/j.na.2010.11.008.  Google Scholar

[28]

Stoch. Dyn., 3 (2003), 279-297. doi: 10.1142/S0219493703000772.  Google Scholar

[29]

Adv. Nonlinear Stud., 9 (2009), 425-427.  Google Scholar

[30]

Theory and Numerical Analysis, Revised edition, Studies in Mathematics and its Applications, 2, North Holland Publishig Co., Amsterdam-New York, 1979.  Google Scholar

[31]

Second Edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 66, SIAM, Philadelphia, PA, 1995.  Google Scholar

[32]

Comm. in Partial Differential Equations, 9 (1984), 215-230.  Google Scholar

[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[4]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[5]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

[6]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[7]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[8]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[9]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[10]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[11]

Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252

[12]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[13]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[14]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[15]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[16]

Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021103

[17]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[18]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[19]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[20]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (19)

[Back to Top]