Citation: |
[1] |
E. Akin, "Lectures on Cantor and Mycielski Sets for Dynamical Systems," Chapel Hill Ergodic Theory Workshops, Contemp. Math., 356, Amer. Math. Soc., Providence, RI, 2004, 21-79. |
[2] |
Ll. Alsedà, M. A. del Río and J. A. Rodríguez, Transitivity and dense periodicity for graph maps, J. Difference Equ. Appl., 9 (2003), 577-598. |
[3] |
F. Balibrea, B. Schweizer, A. Sklar and J. Smítal, Generalized specification property and distributional chaos, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1683-1694.doi: 10.1142/S0218127403007539. |
[4] |
J. Banks, Regular periodic decompositions for topologically transitive maps, Ergodic Theory Dynam. Systems, 17 (1997), 505-529.doi: 10.1017/S0143385797069885. |
[5] |
J. Banks, Topological mapping properties defined by digraphs, Discrete Contin. Dynam. Systems, 5 (1999), 83-92.doi: 10.3934/dcds.1999.5.83. |
[6] |
M. Barge and J. Martin, Dense orbits on the interval, Michigan Math. J., 34 (1987), 3-11.doi: 10.1307/mmj/1029003477. |
[7] |
W. Bauer and K. Sigmund, Topological dynamics of transformations induced on the space of probability measures, Monatsh. Math., 79 (1975), 81-92.doi: 10.1007/BF01585664. |
[8] |
F. Blanchard, E. Glasner, S. Kolyada and A. Maass, On Li-Yorke pairs, J. Reine Angew. Math., 547 (2002), 51-68.doi: 10.1515/crll.2002.053. |
[9] |
F. Blanchard and W. Huang, Entropy sets, weakly mixing sets and entropy capacity, Discrete Contin. Dyn. Syst., 20 (2008), 275-311. |
[10] |
F. Blanchard, W. Huang and L. Snoha, Topological size of scrambled sets, Colloq. Math., 110 (2008), 293-361.doi: 10.4064/cm110-2-3. |
[11] |
A. M. Blokh, On graph-realizable sets of periods, J. Difference Equ. Appl., 9 (2003), 343-357. |
[12] |
R. Bowen, Topological entropy and axiom A, in "Global Analysis," Proceedings of Symposia on Pure Mathematics, 14, Am. Math. Soc., Providence, RI, 1970. |
[13] |
J. Buzzi, Specification on the interval, Trans. Amer. Math. Soc., 349 (1997), 2737-2754.doi: 10.1090/S0002-9947-97-01873-4. |
[14] |
M. Denker, C. Grillenberger and K. Sigmund, "Ergodic Theory on Compact Spaces," Lecture Notes in Mathematics, 527, Springer-Verlag, Berlin-New York, 1976. |
[15] |
H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.doi: 10.1007/BF01692494. |
[16] |
W. Huang and X. Ye, Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topology Appl., 117 (2002), 259-272.doi: 10.1016/S0166-8641(01)00025-6. |
[17] |
A. Illanes and S. Nadler, "Hyperspaces," Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, Inc., New York, 1999. |
[18] |
A. Iwanik, Independence and scrambled sets for chaotic mappings, The mathematical heritage of C. F. Gauss, 372-378, World Sci. Publ., River Edge, NJ, 1991. |
[19] |
H. Kato, On scrambled sets and a theorem of Kuratowski on independent sets, Proc. Amer. Math. Soc., 126 (1998), 2151-2157.doi: 10.1090/S0002-9939-98-04344-5. |
[20] |
K. Kuratowski, Applications of the Baire-category method to the problem of independent sets, Collection of articles dedicated to Andrzej Mostowski on the occasion of his sixtieth birthday, Fund. Math., 81 (1973), 65-72. |
[21] |
D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy, Qual. Theory Dyn. Syst., 6 (2005), 169-179.doi: 10.1007/BF02972670. |
[22] |
S. H. Li, $\omega$-chaos and topological entropy, Trans. Amer. Math. Soc., 339 (1993), 243-249.doi: 10.2307/2154217. |
[23] |
T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985-992.doi: 10.2307/2318254. |
[24] |
G. Liao and L. Wang, Almost periodicity and distributional chaos, in "Foundations of Computational Mathematics" (Hong Kong, 2000), 189-210, World Sci. Publ., River Edge, NJ, 2002. |
[25] |
E. Murinová, Generic chaos in metric spaces, Acta Univ. M. Belii Ser. Math., 8 (2000), 43-50. |
[26] |
J.-H. Mai, Devaney's chaos implies existence of $s$-scrambled sets, Proc. Amer. Math. Soc., 132 (2004), 2761-2767.doi: 10.1090/S0002-9939-04-07514-8. |
[27] |
M. Málek, Distributional chaos for continuous mappings of the circle, European Conference on Iteration Theory (Muszyna-Z\l ockie, 1998), Ann. Math. Sil., 13 (1999), 205-210. |
[28] |
E. E. Moise, "Geometric Topology in Dimensions $2$ and $3$," Graduate Texts in Mathematics, 47, Springer-Verlag, New York-Heidelberg, 1977. |
[29] |
M. Morse and G. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math., 62 (1940), 1-42.doi: 10.2307/2371431. |
[30] |
J. Mycielski, Independent sets in topological algebras, Fund. Math., 55 (1964), 139-147. |
[31] |
P. Oprocha, Specification properties and dense distributional chaos, Discrete Contin. Dyn. Syst., 17 (2007), 821-833.doi: 10.3934/dcds.2007.17.821. |
[32] |
P. Oprocha, Distributional chaos revisited, Trans. Amer. Math. Soc., 361 (2009), 4901-4925.doi: 10.1090/S0002-9947-09-04810-7. |
[33] |
P. Oprocha and M. Štefánková, Specification property and distributional chaos almost everywhere, Proc. Amer. Math. Soc., 136 (2008), 3931-3940.doi: 10.1090/S0002-9939-08-09602-0. |
[34] |
P. Oprocha and G. Zhang, On local aspects of topological weak mixing in dimension one and beyond, Studia Math., 202 (2011), 261-288.doi: 10.4064/sm202-3-4. |
[35] |
J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math., 42 (1941), 874-920.doi: 10.2307/1968772. |
[36] |
J. Piórek, On the generic chaos in dynamical systems, Univ. Iagel. Acta Math., 25 (1985), 293-298. |
[37] |
T. B. Rushing, "Topological Embeddings," Pure and Applied Mathematics, 52, Academic Press, New York-London, 1973. |
[38] |
S. Ruette, Dense chaos for continuous interval maps, Nonlinearity, 18 (2005), 1691-1698.doi: 10.1088/0951-7715/18/4/015. |
[39] |
S. Ruette, Chaos for continuous interval maps, unpublished monograph. |
[40] |
S. Shao and X. Ye, $\mathcalF$-mixing and weak disjointness, Topology Appl., 135 (2004), 231-247.doi: 10.1016/S0166-8641(03)00166-4. |
[41] |
B. Schweizer and J. Smítal, Measure of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344 (1994), 737-754.doi: 10.2307/2154504. |
[42] |
J. Smítal, A chaotic function with some extremal properties, Proc. Am. Math. Soc., 87 (1983), 54-56. |
[43] |
K. Sigmund, On dynamical systems with the specification property, Trans. Amer. Math. Soc., 190 (1974), 285-299.doi: 10.1090/S0002-9947-1974-0352411-X. |
[44] |
A. Sklar and J. Smítal, Distributional chaos on compact metric spaces via specification properties, J. Math. Anal. Appl., 241 (2000), 181-188.doi: 10.1006/jmaa.1999.6633. |
[45] |
J. Smítal and M. Štefánková, Omega-chaos almost everywhere, Discrete Contin. Dyn. Syst., 9 (2003), 1323-1327.doi: 10.3934/dcds.2003.9.1323. |
[46] |
L. Snoha, Generic chaos, Comment. Math. Univ. Carolin., 31 (1990), 793-810. |
[47] |
L. Snoha, Dense chaos, Comment. Math. Univ. Carolin., 33 (1992), 747-752. |
[48] |
J. C. Xiong and Z. G. Yang, Chaos caused by a topologically mixing map, Dynamical systems and related topics (Nagoya, 1990), Adv. Ser. Dynam. Systems, 9, World Sci. Publ., River Edge, NJ, (1991), 550-572. |