September  2011, 31(3): 797-825. doi: 10.3934/dcds.2011.31.797

Coherent lists and chaotic sets

1. 

Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków

Received  April 2010 Revised  July 2011 Published  August 2011

In this article we apply (recently extended by Kato and Akin) an elegant method of Iwanik (which adopts independence relations of Kuratowski and Mycielski) in the construction of various chaotic sets. We provide ''easy to track'' proofs of some known facts and establish new results as well. The main advantage of the presented approach is that it is easy to verify each step of the proof, when previously it was almost impossible to go into all the details of the construction (usually performed as an inductive procedure). Furthermore, we are able extend known results on chaotic sets in an elegant way. Scrambled, distributionally scrambled and chaotic sets with relation to various notions of mixing are considered.
Citation: Piotr Oprocha. Coherent lists and chaotic sets. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 797-825. doi: 10.3934/dcds.2011.31.797
References:
[1]

E. Akin, "Lectures on Cantor and Mycielski Sets for Dynamical Systems,", Chapel Hill Ergodic Theory Workshops, 356 (2004), 21. Google Scholar

[2]

Ll. Alsedà, M. A. del Río and J. A. Rodríguez, Transitivity and dense periodicity for graph maps,, J. Difference Equ. Appl., 9 (2003), 577. Google Scholar

[3]

F. Balibrea, B. Schweizer, A. Sklar and J. Smítal, Generalized specification property and distributional chaos,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1683. doi: 10.1142/S0218127403007539. Google Scholar

[4]

J. Banks, Regular periodic decompositions for topologically transitive maps,, Ergodic Theory Dynam. Systems, 17 (1997), 505. doi: 10.1017/S0143385797069885. Google Scholar

[5]

J. Banks, Topological mapping properties defined by digraphs,, Discrete Contin. Dynam. Systems, 5 (1999), 83. doi: 10.3934/dcds.1999.5.83. Google Scholar

[6]

M. Barge and J. Martin, Dense orbits on the interval,, Michigan Math. J., 34 (1987), 3. doi: 10.1307/mmj/1029003477. Google Scholar

[7]

W. Bauer and K. Sigmund, Topological dynamics of transformations induced on the space of probability measures,, Monatsh. Math., 79 (1975), 81. doi: 10.1007/BF01585664. Google Scholar

[8]

F. Blanchard, E. Glasner, S. Kolyada and A. Maass, On Li-Yorke pairs,, J. Reine Angew. Math., 547 (2002), 51. doi: 10.1515/crll.2002.053. Google Scholar

[9]

F. Blanchard and W. Huang, Entropy sets, weakly mixing sets and entropy capacity,, Discrete Contin. Dyn. Syst., 20 (2008), 275. Google Scholar

[10]

F. Blanchard, W. Huang and L. Snoha, Topological size of scrambled sets,, Colloq. Math., 110 (2008), 293. doi: 10.4064/cm110-2-3. Google Scholar

[11]

A. M. Blokh, On graph-realizable sets of periods,, J. Difference Equ. Appl., 9 (2003), 343. Google Scholar

[12]

R. Bowen, Topological entropy and axiom A,, in, 14 (1970). Google Scholar

[13]

J. Buzzi, Specification on the interval,, Trans. Amer. Math. Soc., 349 (1997), 2737. doi: 10.1090/S0002-9947-97-01873-4. Google Scholar

[14]

M. Denker, C. Grillenberger and K. Sigmund, "Ergodic Theory on Compact Spaces,", Lecture Notes in Mathematics, 527 (1976). Google Scholar

[15]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation,, Math. Systems Theory, 1 (1967), 1. doi: 10.1007/BF01692494. Google Scholar

[16]

W. Huang and X. Ye, Devaney's chaos or 2-scattering implies Li-Yorke's chaos,, Topology Appl., 117 (2002), 259. doi: 10.1016/S0166-8641(01)00025-6. Google Scholar

[17]

A. Illanes and S. Nadler, "Hyperspaces,", Fundamentals and recent advances, 216 (1999). Google Scholar

[18]

A. Iwanik, Independence and scrambled sets for chaotic mappings,, The mathematical heritage of C. F. Gauss, (1991), 372. Google Scholar

[19]

H. Kato, On scrambled sets and a theorem of Kuratowski on independent sets,, Proc. Amer. Math. Soc., 126 (1998), 2151. doi: 10.1090/S0002-9939-98-04344-5. Google Scholar

[20]

K. Kuratowski, Applications of the Baire-category method to the problem of independent sets,, Collection of articles dedicated to Andrzej Mostowski on the occasion of his sixtieth birthday, 81 (1973), 65. Google Scholar

[21]

D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy,, Qual. Theory Dyn. Syst., 6 (2005), 169. doi: 10.1007/BF02972670. Google Scholar

[22]

S. H. Li, $\omega$-chaos and topological entropy,, Trans. Amer. Math. Soc., 339 (1993), 243. doi: 10.2307/2154217. Google Scholar

[23]

T. Y. Li and J. A. Yorke, Period three implies chaos,, Amer. Math. Monthly, 82 (1975), 985. doi: 10.2307/2318254. Google Scholar

[24]

G. Liao and L. Wang, Almost periodicity and distributional chaos,, in, (2000), 189. Google Scholar

[25]

E. Murinová, Generic chaos in metric spaces,, Acta Univ. M. Belii Ser. Math., 8 (2000), 43. Google Scholar

[26]

J.-H. Mai, Devaney's chaos implies existence of $s$-scrambled sets,, Proc. Amer. Math. Soc., 132 (2004), 2761. doi: 10.1090/S0002-9939-04-07514-8. Google Scholar

[27]

M. Málek, Distributional chaos for continuous mappings of the circle,, European Conference on Iteration Theory (Muszyna-Z\l ockie, 13 (1999), 205. Google Scholar

[28]

E. E. Moise, "Geometric Topology in Dimensions $2$ and $3$,", Graduate Texts in Mathematics, 47 (1977). Google Scholar

[29]

M. Morse and G. Hedlund, Symbolic dynamics II. Sturmian trajectories,, Amer. J. Math., 62 (1940), 1. doi: 10.2307/2371431. Google Scholar

[30]

J. Mycielski, Independent sets in topological algebras,, Fund. Math., 55 (1964), 139. Google Scholar

[31]

P. Oprocha, Specification properties and dense distributional chaos,, Discrete Contin. Dyn. Syst., 17 (2007), 821. doi: 10.3934/dcds.2007.17.821. Google Scholar

[32]

P. Oprocha, Distributional chaos revisited,, Trans. Amer. Math. Soc., 361 (2009), 4901. doi: 10.1090/S0002-9947-09-04810-7. Google Scholar

[33]

P. Oprocha and M. Štefánková, Specification property and distributional chaos almost everywhere,, Proc. Amer. Math. Soc., 136 (2008), 3931. doi: 10.1090/S0002-9939-08-09602-0. Google Scholar

[34]

P. Oprocha and G. Zhang, On local aspects of topological weak mixing in dimension one and beyond,, Studia Math., 202 (2011), 261. doi: 10.4064/sm202-3-4. Google Scholar

[35]

J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity,, Ann. of Math., 42 (1941), 874. doi: 10.2307/1968772. Google Scholar

[36]

J. Piórek, On the generic chaos in dynamical systems,, Univ. Iagel. Acta Math., 25 (1985), 293. Google Scholar

[37]

T. B. Rushing, "Topological Embeddings,", Pure and Applied Mathematics, 52 (1973). Google Scholar

[38]

S. Ruette, Dense chaos for continuous interval maps,, Nonlinearity, 18 (2005), 1691. doi: 10.1088/0951-7715/18/4/015. Google Scholar

[39]

S. Ruette, Chaos for continuous interval maps,, unpublished monograph., (). Google Scholar

[40]

S. Shao and X. Ye, $\mathcalF$-mixing and weak disjointness,, Topology Appl., 135 (2004), 231. doi: 10.1016/S0166-8641(03)00166-4. Google Scholar

[41]

B. Schweizer and J. Smítal, Measure of chaos and a spectral decomposition of dynamical systems on the interval,, Trans. Amer. Math. Soc., 344 (1994), 737. doi: 10.2307/2154504. Google Scholar

[42]

J. Smítal, A chaotic function with some extremal properties,, Proc. Am. Math. Soc., 87 (1983), 54. Google Scholar

[43]

K. Sigmund, On dynamical systems with the specification property,, Trans. Amer. Math. Soc., 190 (1974), 285. doi: 10.1090/S0002-9947-1974-0352411-X. Google Scholar

[44]

A. Sklar and J. Smítal, Distributional chaos on compact metric spaces via specification properties,, J. Math. Anal. Appl., 241 (2000), 181. doi: 10.1006/jmaa.1999.6633. Google Scholar

[45]

J. Smítal and M. Štefánková, Omega-chaos almost everywhere,, Discrete Contin. Dyn. Syst., 9 (2003), 1323. doi: 10.3934/dcds.2003.9.1323. Google Scholar

[46]

L. Snoha, Generic chaos,, Comment. Math. Univ. Carolin., 31 (1990), 793. Google Scholar

[47]

L. Snoha, Dense chaos,, Comment. Math. Univ. Carolin., 33 (1992), 747. Google Scholar

[48]

J. C. Xiong and Z. G. Yang, Chaos caused by a topologically mixing map,, Dynamical systems and related topics (Nagoya, 9 (1991), 550. Google Scholar

show all references

References:
[1]

E. Akin, "Lectures on Cantor and Mycielski Sets for Dynamical Systems,", Chapel Hill Ergodic Theory Workshops, 356 (2004), 21. Google Scholar

[2]

Ll. Alsedà, M. A. del Río and J. A. Rodríguez, Transitivity and dense periodicity for graph maps,, J. Difference Equ. Appl., 9 (2003), 577. Google Scholar

[3]

F. Balibrea, B. Schweizer, A. Sklar and J. Smítal, Generalized specification property and distributional chaos,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1683. doi: 10.1142/S0218127403007539. Google Scholar

[4]

J. Banks, Regular periodic decompositions for topologically transitive maps,, Ergodic Theory Dynam. Systems, 17 (1997), 505. doi: 10.1017/S0143385797069885. Google Scholar

[5]

J. Banks, Topological mapping properties defined by digraphs,, Discrete Contin. Dynam. Systems, 5 (1999), 83. doi: 10.3934/dcds.1999.5.83. Google Scholar

[6]

M. Barge and J. Martin, Dense orbits on the interval,, Michigan Math. J., 34 (1987), 3. doi: 10.1307/mmj/1029003477. Google Scholar

[7]

W. Bauer and K. Sigmund, Topological dynamics of transformations induced on the space of probability measures,, Monatsh. Math., 79 (1975), 81. doi: 10.1007/BF01585664. Google Scholar

[8]

F. Blanchard, E. Glasner, S. Kolyada and A. Maass, On Li-Yorke pairs,, J. Reine Angew. Math., 547 (2002), 51. doi: 10.1515/crll.2002.053. Google Scholar

[9]

F. Blanchard and W. Huang, Entropy sets, weakly mixing sets and entropy capacity,, Discrete Contin. Dyn. Syst., 20 (2008), 275. Google Scholar

[10]

F. Blanchard, W. Huang and L. Snoha, Topological size of scrambled sets,, Colloq. Math., 110 (2008), 293. doi: 10.4064/cm110-2-3. Google Scholar

[11]

A. M. Blokh, On graph-realizable sets of periods,, J. Difference Equ. Appl., 9 (2003), 343. Google Scholar

[12]

R. Bowen, Topological entropy and axiom A,, in, 14 (1970). Google Scholar

[13]

J. Buzzi, Specification on the interval,, Trans. Amer. Math. Soc., 349 (1997), 2737. doi: 10.1090/S0002-9947-97-01873-4. Google Scholar

[14]

M. Denker, C. Grillenberger and K. Sigmund, "Ergodic Theory on Compact Spaces,", Lecture Notes in Mathematics, 527 (1976). Google Scholar

[15]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation,, Math. Systems Theory, 1 (1967), 1. doi: 10.1007/BF01692494. Google Scholar

[16]

W. Huang and X. Ye, Devaney's chaos or 2-scattering implies Li-Yorke's chaos,, Topology Appl., 117 (2002), 259. doi: 10.1016/S0166-8641(01)00025-6. Google Scholar

[17]

A. Illanes and S. Nadler, "Hyperspaces,", Fundamentals and recent advances, 216 (1999). Google Scholar

[18]

A. Iwanik, Independence and scrambled sets for chaotic mappings,, The mathematical heritage of C. F. Gauss, (1991), 372. Google Scholar

[19]

H. Kato, On scrambled sets and a theorem of Kuratowski on independent sets,, Proc. Amer. Math. Soc., 126 (1998), 2151. doi: 10.1090/S0002-9939-98-04344-5. Google Scholar

[20]

K. Kuratowski, Applications of the Baire-category method to the problem of independent sets,, Collection of articles dedicated to Andrzej Mostowski on the occasion of his sixtieth birthday, 81 (1973), 65. Google Scholar

[21]

D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy,, Qual. Theory Dyn. Syst., 6 (2005), 169. doi: 10.1007/BF02972670. Google Scholar

[22]

S. H. Li, $\omega$-chaos and topological entropy,, Trans. Amer. Math. Soc., 339 (1993), 243. doi: 10.2307/2154217. Google Scholar

[23]

T. Y. Li and J. A. Yorke, Period three implies chaos,, Amer. Math. Monthly, 82 (1975), 985. doi: 10.2307/2318254. Google Scholar

[24]

G. Liao and L. Wang, Almost periodicity and distributional chaos,, in, (2000), 189. Google Scholar

[25]

E. Murinová, Generic chaos in metric spaces,, Acta Univ. M. Belii Ser. Math., 8 (2000), 43. Google Scholar

[26]

J.-H. Mai, Devaney's chaos implies existence of $s$-scrambled sets,, Proc. Amer. Math. Soc., 132 (2004), 2761. doi: 10.1090/S0002-9939-04-07514-8. Google Scholar

[27]

M. Málek, Distributional chaos for continuous mappings of the circle,, European Conference on Iteration Theory (Muszyna-Z\l ockie, 13 (1999), 205. Google Scholar

[28]

E. E. Moise, "Geometric Topology in Dimensions $2$ and $3$,", Graduate Texts in Mathematics, 47 (1977). Google Scholar

[29]

M. Morse and G. Hedlund, Symbolic dynamics II. Sturmian trajectories,, Amer. J. Math., 62 (1940), 1. doi: 10.2307/2371431. Google Scholar

[30]

J. Mycielski, Independent sets in topological algebras,, Fund. Math., 55 (1964), 139. Google Scholar

[31]

P. Oprocha, Specification properties and dense distributional chaos,, Discrete Contin. Dyn. Syst., 17 (2007), 821. doi: 10.3934/dcds.2007.17.821. Google Scholar

[32]

P. Oprocha, Distributional chaos revisited,, Trans. Amer. Math. Soc., 361 (2009), 4901. doi: 10.1090/S0002-9947-09-04810-7. Google Scholar

[33]

P. Oprocha and M. Štefánková, Specification property and distributional chaos almost everywhere,, Proc. Amer. Math. Soc., 136 (2008), 3931. doi: 10.1090/S0002-9939-08-09602-0. Google Scholar

[34]

P. Oprocha and G. Zhang, On local aspects of topological weak mixing in dimension one and beyond,, Studia Math., 202 (2011), 261. doi: 10.4064/sm202-3-4. Google Scholar

[35]

J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity,, Ann. of Math., 42 (1941), 874. doi: 10.2307/1968772. Google Scholar

[36]

J. Piórek, On the generic chaos in dynamical systems,, Univ. Iagel. Acta Math., 25 (1985), 293. Google Scholar

[37]

T. B. Rushing, "Topological Embeddings,", Pure and Applied Mathematics, 52 (1973). Google Scholar

[38]

S. Ruette, Dense chaos for continuous interval maps,, Nonlinearity, 18 (2005), 1691. doi: 10.1088/0951-7715/18/4/015. Google Scholar

[39]

S. Ruette, Chaos for continuous interval maps,, unpublished monograph., (). Google Scholar

[40]

S. Shao and X. Ye, $\mathcalF$-mixing and weak disjointness,, Topology Appl., 135 (2004), 231. doi: 10.1016/S0166-8641(03)00166-4. Google Scholar

[41]

B. Schweizer and J. Smítal, Measure of chaos and a spectral decomposition of dynamical systems on the interval,, Trans. Amer. Math. Soc., 344 (1994), 737. doi: 10.2307/2154504. Google Scholar

[42]

J. Smítal, A chaotic function with some extremal properties,, Proc. Am. Math. Soc., 87 (1983), 54. Google Scholar

[43]

K. Sigmund, On dynamical systems with the specification property,, Trans. Amer. Math. Soc., 190 (1974), 285. doi: 10.1090/S0002-9947-1974-0352411-X. Google Scholar

[44]

A. Sklar and J. Smítal, Distributional chaos on compact metric spaces via specification properties,, J. Math. Anal. Appl., 241 (2000), 181. doi: 10.1006/jmaa.1999.6633. Google Scholar

[45]

J. Smítal and M. Štefánková, Omega-chaos almost everywhere,, Discrete Contin. Dyn. Syst., 9 (2003), 1323. doi: 10.3934/dcds.2003.9.1323. Google Scholar

[46]

L. Snoha, Generic chaos,, Comment. Math. Univ. Carolin., 31 (1990), 793. Google Scholar

[47]

L. Snoha, Dense chaos,, Comment. Math. Univ. Carolin., 33 (1992), 747. Google Scholar

[48]

J. C. Xiong and Z. G. Yang, Chaos caused by a topologically mixing map,, Dynamical systems and related topics (Nagoya, 9 (1991), 550. Google Scholar

[1]

Jonas Eriksson. A weight-based characterization of the set of correctable error patterns under list-of-2 decoding. Advances in Mathematics of Communications, 2007, 1 (3) : 331-356. doi: 10.3934/amc.2007.1.331

[2]

Piotr Oprocha. Specification properties and dense distributional chaos. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 821-833. doi: 10.3934/dcds.2007.17.821

[3]

Piotr Oprocha, Pawel Wilczynski. Distributional chaos via isolating segments. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 347-356. doi: 10.3934/dcdsb.2007.8.347

[4]

Lidong Wang, Xiang Wang, Fengchun Lei, Heng Liu. Mixing invariant extremal distributional chaos. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6533-6538. doi: 10.3934/dcds.2016082

[5]

Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069

[6]

Lan Wen. On the preperiodic set. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 237-241. doi: 10.3934/dcds.2000.6.237

[7]

James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667

[8]

Nancy Guelman, Jorge Iglesias, Aldo Portela. Examples of minimal set for IFSs. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5253-5269. doi: 10.3934/dcds.2017227

[9]

Luke G. Rogers, Alexander Teplyaev. Laplacians on the basilica Julia set. Communications on Pure & Applied Analysis, 2010, 9 (1) : 211-231. doi: 10.3934/cpaa.2010.9.211

[10]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[11]

Sanjit Chatterjee, Chethan Kamath, Vikas Kumar. Private set-intersection with common set-up. Advances in Mathematics of Communications, 2018, 12 (1) : 17-47. doi: 10.3934/amc.2018002

[12]

Dominik Kwietniak. Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2451-2467. doi: 10.3934/dcds.2013.33.2451

[13]

Maxim Arnold, Walter Craig. On the size of the Navier - Stokes singular set. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1165-1178. doi: 10.3934/dcds.2010.28.1165

[14]

Michel Crouzeix. The annulus as a K-spectral set. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2291-2303. doi: 10.3934/cpaa.2012.11.2291

[15]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[16]

Jagannathan Gomatam, Isobel McFarlane. Generalisation of the Mandelbrot set to integral functions of quaternions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 107-116. doi: 10.3934/dcds.1999.5.107

[17]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

[18]

Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004

[19]

Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure & Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1

[20]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]