September  2011, 31(3): 797-825. doi: 10.3934/dcds.2011.31.797

Coherent lists and chaotic sets

1. 

Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków

Received  April 2010 Revised  July 2011 Published  August 2011

In this article we apply (recently extended by Kato and Akin) an elegant method of Iwanik (which adopts independence relations of Kuratowski and Mycielski) in the construction of various chaotic sets. We provide ''easy to track'' proofs of some known facts and establish new results as well. The main advantage of the presented approach is that it is easy to verify each step of the proof, when previously it was almost impossible to go into all the details of the construction (usually performed as an inductive procedure). Furthermore, we are able extend known results on chaotic sets in an elegant way. Scrambled, distributionally scrambled and chaotic sets with relation to various notions of mixing are considered.
Citation: Piotr Oprocha. Coherent lists and chaotic sets. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 797-825. doi: 10.3934/dcds.2011.31.797
References:
[1]

E. Akin, "Lectures on Cantor and Mycielski Sets for Dynamical Systems,", Chapel Hill Ergodic Theory Workshops, 356 (2004), 21.   Google Scholar

[2]

Ll. Alsedà, M. A. del Río and J. A. Rodríguez, Transitivity and dense periodicity for graph maps,, J. Difference Equ. Appl., 9 (2003), 577.   Google Scholar

[3]

F. Balibrea, B. Schweizer, A. Sklar and J. Smítal, Generalized specification property and distributional chaos,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1683.  doi: 10.1142/S0218127403007539.  Google Scholar

[4]

J. Banks, Regular periodic decompositions for topologically transitive maps,, Ergodic Theory Dynam. Systems, 17 (1997), 505.  doi: 10.1017/S0143385797069885.  Google Scholar

[5]

J. Banks, Topological mapping properties defined by digraphs,, Discrete Contin. Dynam. Systems, 5 (1999), 83.  doi: 10.3934/dcds.1999.5.83.  Google Scholar

[6]

M. Barge and J. Martin, Dense orbits on the interval,, Michigan Math. J., 34 (1987), 3.  doi: 10.1307/mmj/1029003477.  Google Scholar

[7]

W. Bauer and K. Sigmund, Topological dynamics of transformations induced on the space of probability measures,, Monatsh. Math., 79 (1975), 81.  doi: 10.1007/BF01585664.  Google Scholar

[8]

F. Blanchard, E. Glasner, S. Kolyada and A. Maass, On Li-Yorke pairs,, J. Reine Angew. Math., 547 (2002), 51.  doi: 10.1515/crll.2002.053.  Google Scholar

[9]

F. Blanchard and W. Huang, Entropy sets, weakly mixing sets and entropy capacity,, Discrete Contin. Dyn. Syst., 20 (2008), 275.   Google Scholar

[10]

F. Blanchard, W. Huang and L. Snoha, Topological size of scrambled sets,, Colloq. Math., 110 (2008), 293.  doi: 10.4064/cm110-2-3.  Google Scholar

[11]

A. M. Blokh, On graph-realizable sets of periods,, J. Difference Equ. Appl., 9 (2003), 343.   Google Scholar

[12]

R. Bowen, Topological entropy and axiom A,, in, 14 (1970).   Google Scholar

[13]

J. Buzzi, Specification on the interval,, Trans. Amer. Math. Soc., 349 (1997), 2737.  doi: 10.1090/S0002-9947-97-01873-4.  Google Scholar

[14]

M. Denker, C. Grillenberger and K. Sigmund, "Ergodic Theory on Compact Spaces,", Lecture Notes in Mathematics, 527 (1976).   Google Scholar

[15]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation,, Math. Systems Theory, 1 (1967), 1.  doi: 10.1007/BF01692494.  Google Scholar

[16]

W. Huang and X. Ye, Devaney's chaos or 2-scattering implies Li-Yorke's chaos,, Topology Appl., 117 (2002), 259.  doi: 10.1016/S0166-8641(01)00025-6.  Google Scholar

[17]

A. Illanes and S. Nadler, "Hyperspaces,", Fundamentals and recent advances, 216 (1999).   Google Scholar

[18]

A. Iwanik, Independence and scrambled sets for chaotic mappings,, The mathematical heritage of C. F. Gauss, (1991), 372.   Google Scholar

[19]

H. Kato, On scrambled sets and a theorem of Kuratowski on independent sets,, Proc. Amer. Math. Soc., 126 (1998), 2151.  doi: 10.1090/S0002-9939-98-04344-5.  Google Scholar

[20]

K. Kuratowski, Applications of the Baire-category method to the problem of independent sets,, Collection of articles dedicated to Andrzej Mostowski on the occasion of his sixtieth birthday, 81 (1973), 65.   Google Scholar

[21]

D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy,, Qual. Theory Dyn. Syst., 6 (2005), 169.  doi: 10.1007/BF02972670.  Google Scholar

[22]

S. H. Li, $\omega$-chaos and topological entropy,, Trans. Amer. Math. Soc., 339 (1993), 243.  doi: 10.2307/2154217.  Google Scholar

[23]

T. Y. Li and J. A. Yorke, Period three implies chaos,, Amer. Math. Monthly, 82 (1975), 985.  doi: 10.2307/2318254.  Google Scholar

[24]

G. Liao and L. Wang, Almost periodicity and distributional chaos,, in, (2000), 189.   Google Scholar

[25]

E. Murinová, Generic chaos in metric spaces,, Acta Univ. M. Belii Ser. Math., 8 (2000), 43.   Google Scholar

[26]

J.-H. Mai, Devaney's chaos implies existence of $s$-scrambled sets,, Proc. Amer. Math. Soc., 132 (2004), 2761.  doi: 10.1090/S0002-9939-04-07514-8.  Google Scholar

[27]

M. Málek, Distributional chaos for continuous mappings of the circle,, European Conference on Iteration Theory (Muszyna-Z\l ockie, 13 (1999), 205.   Google Scholar

[28]

E. E. Moise, "Geometric Topology in Dimensions $2$ and $3$,", Graduate Texts in Mathematics, 47 (1977).   Google Scholar

[29]

M. Morse and G. Hedlund, Symbolic dynamics II. Sturmian trajectories,, Amer. J. Math., 62 (1940), 1.  doi: 10.2307/2371431.  Google Scholar

[30]

J. Mycielski, Independent sets in topological algebras,, Fund. Math., 55 (1964), 139.   Google Scholar

[31]

P. Oprocha, Specification properties and dense distributional chaos,, Discrete Contin. Dyn. Syst., 17 (2007), 821.  doi: 10.3934/dcds.2007.17.821.  Google Scholar

[32]

P. Oprocha, Distributional chaos revisited,, Trans. Amer. Math. Soc., 361 (2009), 4901.  doi: 10.1090/S0002-9947-09-04810-7.  Google Scholar

[33]

P. Oprocha and M. Štefánková, Specification property and distributional chaos almost everywhere,, Proc. Amer. Math. Soc., 136 (2008), 3931.  doi: 10.1090/S0002-9939-08-09602-0.  Google Scholar

[34]

P. Oprocha and G. Zhang, On local aspects of topological weak mixing in dimension one and beyond,, Studia Math., 202 (2011), 261.  doi: 10.4064/sm202-3-4.  Google Scholar

[35]

J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity,, Ann. of Math., 42 (1941), 874.  doi: 10.2307/1968772.  Google Scholar

[36]

J. Piórek, On the generic chaos in dynamical systems,, Univ. Iagel. Acta Math., 25 (1985), 293.   Google Scholar

[37]

T. B. Rushing, "Topological Embeddings,", Pure and Applied Mathematics, 52 (1973).   Google Scholar

[38]

S. Ruette, Dense chaos for continuous interval maps,, Nonlinearity, 18 (2005), 1691.  doi: 10.1088/0951-7715/18/4/015.  Google Scholar

[39]

S. Ruette, Chaos for continuous interval maps,, unpublished monograph., ().   Google Scholar

[40]

S. Shao and X. Ye, $\mathcalF$-mixing and weak disjointness,, Topology Appl., 135 (2004), 231.  doi: 10.1016/S0166-8641(03)00166-4.  Google Scholar

[41]

B. Schweizer and J. Smítal, Measure of chaos and a spectral decomposition of dynamical systems on the interval,, Trans. Amer. Math. Soc., 344 (1994), 737.  doi: 10.2307/2154504.  Google Scholar

[42]

J. Smítal, A chaotic function with some extremal properties,, Proc. Am. Math. Soc., 87 (1983), 54.   Google Scholar

[43]

K. Sigmund, On dynamical systems with the specification property,, Trans. Amer. Math. Soc., 190 (1974), 285.  doi: 10.1090/S0002-9947-1974-0352411-X.  Google Scholar

[44]

A. Sklar and J. Smítal, Distributional chaos on compact metric spaces via specification properties,, J. Math. Anal. Appl., 241 (2000), 181.  doi: 10.1006/jmaa.1999.6633.  Google Scholar

[45]

J. Smítal and M. Štefánková, Omega-chaos almost everywhere,, Discrete Contin. Dyn. Syst., 9 (2003), 1323.  doi: 10.3934/dcds.2003.9.1323.  Google Scholar

[46]

L. Snoha, Generic chaos,, Comment. Math. Univ. Carolin., 31 (1990), 793.   Google Scholar

[47]

L. Snoha, Dense chaos,, Comment. Math. Univ. Carolin., 33 (1992), 747.   Google Scholar

[48]

J. C. Xiong and Z. G. Yang, Chaos caused by a topologically mixing map,, Dynamical systems and related topics (Nagoya, 9 (1991), 550.   Google Scholar

show all references

References:
[1]

E. Akin, "Lectures on Cantor and Mycielski Sets for Dynamical Systems,", Chapel Hill Ergodic Theory Workshops, 356 (2004), 21.   Google Scholar

[2]

Ll. Alsedà, M. A. del Río and J. A. Rodríguez, Transitivity and dense periodicity for graph maps,, J. Difference Equ. Appl., 9 (2003), 577.   Google Scholar

[3]

F. Balibrea, B. Schweizer, A. Sklar and J. Smítal, Generalized specification property and distributional chaos,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1683.  doi: 10.1142/S0218127403007539.  Google Scholar

[4]

J. Banks, Regular periodic decompositions for topologically transitive maps,, Ergodic Theory Dynam. Systems, 17 (1997), 505.  doi: 10.1017/S0143385797069885.  Google Scholar

[5]

J. Banks, Topological mapping properties defined by digraphs,, Discrete Contin. Dynam. Systems, 5 (1999), 83.  doi: 10.3934/dcds.1999.5.83.  Google Scholar

[6]

M. Barge and J. Martin, Dense orbits on the interval,, Michigan Math. J., 34 (1987), 3.  doi: 10.1307/mmj/1029003477.  Google Scholar

[7]

W. Bauer and K. Sigmund, Topological dynamics of transformations induced on the space of probability measures,, Monatsh. Math., 79 (1975), 81.  doi: 10.1007/BF01585664.  Google Scholar

[8]

F. Blanchard, E. Glasner, S. Kolyada and A. Maass, On Li-Yorke pairs,, J. Reine Angew. Math., 547 (2002), 51.  doi: 10.1515/crll.2002.053.  Google Scholar

[9]

F. Blanchard and W. Huang, Entropy sets, weakly mixing sets and entropy capacity,, Discrete Contin. Dyn. Syst., 20 (2008), 275.   Google Scholar

[10]

F. Blanchard, W. Huang and L. Snoha, Topological size of scrambled sets,, Colloq. Math., 110 (2008), 293.  doi: 10.4064/cm110-2-3.  Google Scholar

[11]

A. M. Blokh, On graph-realizable sets of periods,, J. Difference Equ. Appl., 9 (2003), 343.   Google Scholar

[12]

R. Bowen, Topological entropy and axiom A,, in, 14 (1970).   Google Scholar

[13]

J. Buzzi, Specification on the interval,, Trans. Amer. Math. Soc., 349 (1997), 2737.  doi: 10.1090/S0002-9947-97-01873-4.  Google Scholar

[14]

M. Denker, C. Grillenberger and K. Sigmund, "Ergodic Theory on Compact Spaces,", Lecture Notes in Mathematics, 527 (1976).   Google Scholar

[15]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation,, Math. Systems Theory, 1 (1967), 1.  doi: 10.1007/BF01692494.  Google Scholar

[16]

W. Huang and X. Ye, Devaney's chaos or 2-scattering implies Li-Yorke's chaos,, Topology Appl., 117 (2002), 259.  doi: 10.1016/S0166-8641(01)00025-6.  Google Scholar

[17]

A. Illanes and S. Nadler, "Hyperspaces,", Fundamentals and recent advances, 216 (1999).   Google Scholar

[18]

A. Iwanik, Independence and scrambled sets for chaotic mappings,, The mathematical heritage of C. F. Gauss, (1991), 372.   Google Scholar

[19]

H. Kato, On scrambled sets and a theorem of Kuratowski on independent sets,, Proc. Amer. Math. Soc., 126 (1998), 2151.  doi: 10.1090/S0002-9939-98-04344-5.  Google Scholar

[20]

K. Kuratowski, Applications of the Baire-category method to the problem of independent sets,, Collection of articles dedicated to Andrzej Mostowski on the occasion of his sixtieth birthday, 81 (1973), 65.   Google Scholar

[21]

D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy,, Qual. Theory Dyn. Syst., 6 (2005), 169.  doi: 10.1007/BF02972670.  Google Scholar

[22]

S. H. Li, $\omega$-chaos and topological entropy,, Trans. Amer. Math. Soc., 339 (1993), 243.  doi: 10.2307/2154217.  Google Scholar

[23]

T. Y. Li and J. A. Yorke, Period three implies chaos,, Amer. Math. Monthly, 82 (1975), 985.  doi: 10.2307/2318254.  Google Scholar

[24]

G. Liao and L. Wang, Almost periodicity and distributional chaos,, in, (2000), 189.   Google Scholar

[25]

E. Murinová, Generic chaos in metric spaces,, Acta Univ. M. Belii Ser. Math., 8 (2000), 43.   Google Scholar

[26]

J.-H. Mai, Devaney's chaos implies existence of $s$-scrambled sets,, Proc. Amer. Math. Soc., 132 (2004), 2761.  doi: 10.1090/S0002-9939-04-07514-8.  Google Scholar

[27]

M. Málek, Distributional chaos for continuous mappings of the circle,, European Conference on Iteration Theory (Muszyna-Z\l ockie, 13 (1999), 205.   Google Scholar

[28]

E. E. Moise, "Geometric Topology in Dimensions $2$ and $3$,", Graduate Texts in Mathematics, 47 (1977).   Google Scholar

[29]

M. Morse and G. Hedlund, Symbolic dynamics II. Sturmian trajectories,, Amer. J. Math., 62 (1940), 1.  doi: 10.2307/2371431.  Google Scholar

[30]

J. Mycielski, Independent sets in topological algebras,, Fund. Math., 55 (1964), 139.   Google Scholar

[31]

P. Oprocha, Specification properties and dense distributional chaos,, Discrete Contin. Dyn. Syst., 17 (2007), 821.  doi: 10.3934/dcds.2007.17.821.  Google Scholar

[32]

P. Oprocha, Distributional chaos revisited,, Trans. Amer. Math. Soc., 361 (2009), 4901.  doi: 10.1090/S0002-9947-09-04810-7.  Google Scholar

[33]

P. Oprocha and M. Štefánková, Specification property and distributional chaos almost everywhere,, Proc. Amer. Math. Soc., 136 (2008), 3931.  doi: 10.1090/S0002-9939-08-09602-0.  Google Scholar

[34]

P. Oprocha and G. Zhang, On local aspects of topological weak mixing in dimension one and beyond,, Studia Math., 202 (2011), 261.  doi: 10.4064/sm202-3-4.  Google Scholar

[35]

J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity,, Ann. of Math., 42 (1941), 874.  doi: 10.2307/1968772.  Google Scholar

[36]

J. Piórek, On the generic chaos in dynamical systems,, Univ. Iagel. Acta Math., 25 (1985), 293.   Google Scholar

[37]

T. B. Rushing, "Topological Embeddings,", Pure and Applied Mathematics, 52 (1973).   Google Scholar

[38]

S. Ruette, Dense chaos for continuous interval maps,, Nonlinearity, 18 (2005), 1691.  doi: 10.1088/0951-7715/18/4/015.  Google Scholar

[39]

S. Ruette, Chaos for continuous interval maps,, unpublished monograph., ().   Google Scholar

[40]

S. Shao and X. Ye, $\mathcalF$-mixing and weak disjointness,, Topology Appl., 135 (2004), 231.  doi: 10.1016/S0166-8641(03)00166-4.  Google Scholar

[41]

B. Schweizer and J. Smítal, Measure of chaos and a spectral decomposition of dynamical systems on the interval,, Trans. Amer. Math. Soc., 344 (1994), 737.  doi: 10.2307/2154504.  Google Scholar

[42]

J. Smítal, A chaotic function with some extremal properties,, Proc. Am. Math. Soc., 87 (1983), 54.   Google Scholar

[43]

K. Sigmund, On dynamical systems with the specification property,, Trans. Amer. Math. Soc., 190 (1974), 285.  doi: 10.1090/S0002-9947-1974-0352411-X.  Google Scholar

[44]

A. Sklar and J. Smítal, Distributional chaos on compact metric spaces via specification properties,, J. Math. Anal. Appl., 241 (2000), 181.  doi: 10.1006/jmaa.1999.6633.  Google Scholar

[45]

J. Smítal and M. Štefánková, Omega-chaos almost everywhere,, Discrete Contin. Dyn. Syst., 9 (2003), 1323.  doi: 10.3934/dcds.2003.9.1323.  Google Scholar

[46]

L. Snoha, Generic chaos,, Comment. Math. Univ. Carolin., 31 (1990), 793.   Google Scholar

[47]

L. Snoha, Dense chaos,, Comment. Math. Univ. Carolin., 33 (1992), 747.   Google Scholar

[48]

J. C. Xiong and Z. G. Yang, Chaos caused by a topologically mixing map,, Dynamical systems and related topics (Nagoya, 9 (1991), 550.   Google Scholar

[1]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[2]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[3]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[4]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[5]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[6]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[7]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[8]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[9]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[10]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[11]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[12]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[13]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[14]

Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021016

[15]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[16]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[17]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[18]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[19]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[20]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]