\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Hamiltonian formalism for models of rotating shallow water in semigeostrophic scaling

Abstract Related Papers Cited by
  • This paper presents a first rigorous study of the so-called large-scale semigeostrophic equations which were first introduced by R. Salmon in 1985 and later generalized by the first author. We show that these models are Hamiltonian on the group of $H^s$ diffeomorphisms for $s>2$. Notably, in the Hamiltonian setting an apparent topological restriction on the Coriolis parameter disappears. We then derive the corresponding Hamiltonian formulation in Eulerian variables via Poisson reduction and give a simple argument for the existence of $H^s$ solutions locally in time.
    Mathematics Subject Classification: Primary: 35Q35, 35A07; Secondary: 76B03, 76U05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Abraham and J. E. Marsden, "Foundations of Mechanics," 2nd edition, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.

    [2]

    V. I. Arnold, Sur la géométrie differentielle des groupes de Lie de dimenson infinie et ses applications à l'hydrodynamique des fluids parfaits, (French) [On the differential geometry of infinite dimensional Lie groups and its applications], Ann. I. Fourier (Grenoble), 16 (1966), 319-361.

    [3]

    V. I. Arnold and B. Khesin, "Topological Methods in Hydrodynamics," Applied Mathematical Sciences, 125, Springer-Verlag, New York, 1998.

    [4]

    J.-D. Benamou and Y. Brenier, Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère transport problem, SIAM J. Appl. Math., 58 (1998), 1450-1461.doi: 10.1137/S0036139995294111.

    [5]

    M. Çalik, M. Oliver and S. Vasylkevych, Global well-posedness for models of rotating shallow water in semigeostrophic scaling, submitted for publication, 2010.

    [6]

    P. R. Chernoff and J. E. Marsden, "Properties of Infinite Dimensional Hamiltonian Systems," Lecture Notes in Mathematics, 425, Springer-Verlag, Berlin-New York, 1974.

    [7]

    M. J. P. Cullen and W. Gangbo, A variational approach for the 2-dimensional semi-geostrophic shallow water equations, Arch. Rational Mech. Anal., 156 (2001), 241-273.doi: 10.1007/s002050000124.

    [8]

    D. Ebin, The manifold of Riemannian metrics, in "Global Analysis" (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), AMS, Providence, RI, (1970), 11-40.

    [9]

    D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92 (1970), 102-163.doi: 10.2307/1970699.

    [10]

    A. Eliassen, The quasi-static equations of motion with pressure as an independent variable, Geofys. Publ. Norske Vid.-Akad. Oslo, 17 (1949), 1-44.

    [11]

    A. Eliassen, On the vertical circulation in frontal zones, Geofys. Publ., 24 (1962), 147-160.

    [12]

    B. J. Hoskins, The geostrophic momentum approximation and the semi-geostrophic equations, J. Atmos. Sci., 32 (1975), 233-242.doi: 10.1175/1520-0469(1975)032<0233:TGMAAT>2.0.CO;2.

    [13]

    J. Isenberg and J. E. Marsden, A slice theorem for the space of solutions of Einstein's equations, Phys. Rep., 89 (1982), 179-222.doi: 10.1016/0370-1573(82)90066-7.

    [14]

    J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems," 2nd edition, Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1999.

    [15]

    M. Oliver, Classical solutions for a generalized Euler equations in two dimensions, J. Math. Anal. Appl., 215 (1997), 471-484.doi: 10.1006/jmaa.1997.5647.

    [16]

    M. Oliver, Variational asymptotics for rotating shallow water near geostrophy: A transformational approach, J. Fluid Mech., 551 (2006), 197-234.doi: 10.1017/S0022112005008256.

    [17]

    M. Oliver and S. Vasylkevych, Generalized LSG models with variable Coriolis parameter, submitted for publication, 2011.

    [18]

    R. Palais, "Foundations of Global Non-Linear Analysis," W. A. Benjamin, Inc., New York-Amsterdam, 1968.

    [19]

    I. Roulston and M. J. Sewell, The Mathematical structure of theories of semigeostrophic type, Philos. Trans. Roy. Soc. London Ser. A, 355 (1997), 2489-2517.doi: 10.1098/rsta.1997.0144.

    [20]

    R. Salmon, New equations for nearly geostrophic flow, J. Fluid Mech., 153 (1985), 461-477.doi: 10.1017/S0022112085001343.

    [21]

    R. Salmon, Large-scale semi-geostrophic equations for use in ocean circulation models, J. Fluid Mech., 318 (1996), 85-105.doi: 10.1017/S0022112096007045.

    [22]

    R. Salmon, "Lectures on Geophysical Fluid Dynamics," Oxford University Press, New York, 1998.

    [23]

    S. Shkoller, Geometry and curvature of diffeomorphism groups with $H^1$ metric and mean hydrodynamics, J. Funct. Anal., 160 (1998), 337-365.doi: 10.1006/jfan.1998.3335.

    [24]

    R. Temam, On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20 (1975), 32-43.doi: 10.1016/0022-1236(75)90052-X.

    [25]

    S. Vasylkevych and J. E. Marsden, The Lie-Poisson structure of the Euler equations of an ideal fluid, Dynam. Part. Differ. Eq., 2 (2005), 281-300.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return