September  2011, 31(3): 827-846. doi: 10.3934/dcds.2011.31.827

Hamiltonian formalism for models of rotating shallow water in semigeostrophic scaling

1. 

School of Engineering and Science, Jacobs University, 28759 Bremen, Germany, Germany

Received  February 2010 Revised  July 2011 Published  August 2011

This paper presents a first rigorous study of the so-called large-scale semigeostrophic equations which were first introduced by R. Salmon in 1985 and later generalized by the first author. We show that these models are Hamiltonian on the group of $H^s$ diffeomorphisms for $s>2$. Notably, in the Hamiltonian setting an apparent topological restriction on the Coriolis parameter disappears. We then derive the corresponding Hamiltonian formulation in Eulerian variables via Poisson reduction and give a simple argument for the existence of $H^s$ solutions locally in time.
Citation: Marcel Oliver, Sergiy Vasylkevych. Hamiltonian formalism for models of rotating shallow water in semigeostrophic scaling. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 827-846. doi: 10.3934/dcds.2011.31.827
References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics,", 2nd edition, (1978).   Google Scholar

[2]

V. I. Arnold, Sur la géométrie differentielle des groupes de Lie de dimenson infinie et ses applications à l'hydrodynamique des fluids parfaits,, (French) [On the differential geometry of infinite dimensional Lie groups and its applications], 16 (1966), 319.   Google Scholar

[3]

V. I. Arnold and B. Khesin, "Topological Methods in Hydrodynamics,", Applied Mathematical Sciences, 125 (1998).   Google Scholar

[4]

J.-D. Benamou and Y. Brenier, Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère transport problem,, SIAM J. Appl. Math., 58 (1998), 1450.  doi: 10.1137/S0036139995294111.  Google Scholar

[5]

M. Çalik, M. Oliver and S. Vasylkevych, Global well-posedness for models of rotating shallow water in semigeostrophic scaling,, submitted for publication, (2010).   Google Scholar

[6]

P. R. Chernoff and J. E. Marsden, "Properties of Infinite Dimensional Hamiltonian Systems,", Lecture Notes in Mathematics, 425 (1974).   Google Scholar

[7]

M. J. P. Cullen and W. Gangbo, A variational approach for the 2-dimensional semi-geostrophic shallow water equations,, Arch. Rational Mech. Anal., 156 (2001), 241.  doi: 10.1007/s002050000124.  Google Scholar

[8]

D. Ebin, The manifold of Riemannian metrics,, in, (1970), 11.   Google Scholar

[9]

D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. Math., 92 (1970), 102.  doi: 10.2307/1970699.  Google Scholar

[10]

A. Eliassen, The quasi-static equations of motion with pressure as an independent variable,, Geofys. Publ. Norske Vid.-Akad. Oslo, 17 (1949), 1.   Google Scholar

[11]

A. Eliassen, On the vertical circulation in frontal zones,, Geofys. Publ., 24 (1962), 147.   Google Scholar

[12]

B. J. Hoskins, The geostrophic momentum approximation and the semi-geostrophic equations,, J. Atmos. Sci., 32 (1975), 233.  doi: 10.1175/1520-0469(1975)032<0233:TGMAAT>2.0.CO;2.  Google Scholar

[13]

J. Isenberg and J. E. Marsden, A slice theorem for the space of solutions of Einstein's equations,, Phys. Rep., 89 (1982), 179.  doi: 10.1016/0370-1573(82)90066-7.  Google Scholar

[14]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems,", 2nd edition, 17 (1999).   Google Scholar

[15]

M. Oliver, Classical solutions for a generalized Euler equations in two dimensions,, J. Math. Anal. Appl., 215 (1997), 471.  doi: 10.1006/jmaa.1997.5647.  Google Scholar

[16]

M. Oliver, Variational asymptotics for rotating shallow water near geostrophy: A transformational approach,, J. Fluid Mech., 551 (2006), 197.  doi: 10.1017/S0022112005008256.  Google Scholar

[17]

M. Oliver and S. Vasylkevych, Generalized LSG models with variable Coriolis parameter,, submitted for publication, (2011).   Google Scholar

[18]

R. Palais, "Foundations of Global Non-Linear Analysis,", W. A. Benjamin, (1968).   Google Scholar

[19]

I. Roulston and M. J. Sewell, The Mathematical structure of theories of semigeostrophic type,, Philos. Trans. Roy. Soc. London Ser. A, 355 (1997), 2489.  doi: 10.1098/rsta.1997.0144.  Google Scholar

[20]

R. Salmon, New equations for nearly geostrophic flow,, J. Fluid Mech., 153 (1985), 461.  doi: 10.1017/S0022112085001343.  Google Scholar

[21]

R. Salmon, Large-scale semi-geostrophic equations for use in ocean circulation models,, J. Fluid Mech., 318 (1996), 85.  doi: 10.1017/S0022112096007045.  Google Scholar

[22]

R. Salmon, "Lectures on Geophysical Fluid Dynamics,", Oxford University Press, (1998).   Google Scholar

[23]

S. Shkoller, Geometry and curvature of diffeomorphism groups with $H^1$ metric and mean hydrodynamics,, J. Funct. Anal., 160 (1998), 337.  doi: 10.1006/jfan.1998.3335.  Google Scholar

[24]

R. Temam, On the Euler equations of incompressible perfect fluids,, J. Funct. Anal., 20 (1975), 32.  doi: 10.1016/0022-1236(75)90052-X.  Google Scholar

[25]

S. Vasylkevych and J. E. Marsden, The Lie-Poisson structure of the Euler equations of an ideal fluid,, Dynam. Part. Differ. Eq., 2 (2005), 281.   Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics,", 2nd edition, (1978).   Google Scholar

[2]

V. I. Arnold, Sur la géométrie differentielle des groupes de Lie de dimenson infinie et ses applications à l'hydrodynamique des fluids parfaits,, (French) [On the differential geometry of infinite dimensional Lie groups and its applications], 16 (1966), 319.   Google Scholar

[3]

V. I. Arnold and B. Khesin, "Topological Methods in Hydrodynamics,", Applied Mathematical Sciences, 125 (1998).   Google Scholar

[4]

J.-D. Benamou and Y. Brenier, Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère transport problem,, SIAM J. Appl. Math., 58 (1998), 1450.  doi: 10.1137/S0036139995294111.  Google Scholar

[5]

M. Çalik, M. Oliver and S. Vasylkevych, Global well-posedness for models of rotating shallow water in semigeostrophic scaling,, submitted for publication, (2010).   Google Scholar

[6]

P. R. Chernoff and J. E. Marsden, "Properties of Infinite Dimensional Hamiltonian Systems,", Lecture Notes in Mathematics, 425 (1974).   Google Scholar

[7]

M. J. P. Cullen and W. Gangbo, A variational approach for the 2-dimensional semi-geostrophic shallow water equations,, Arch. Rational Mech. Anal., 156 (2001), 241.  doi: 10.1007/s002050000124.  Google Scholar

[8]

D. Ebin, The manifold of Riemannian metrics,, in, (1970), 11.   Google Scholar

[9]

D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. Math., 92 (1970), 102.  doi: 10.2307/1970699.  Google Scholar

[10]

A. Eliassen, The quasi-static equations of motion with pressure as an independent variable,, Geofys. Publ. Norske Vid.-Akad. Oslo, 17 (1949), 1.   Google Scholar

[11]

A. Eliassen, On the vertical circulation in frontal zones,, Geofys. Publ., 24 (1962), 147.   Google Scholar

[12]

B. J. Hoskins, The geostrophic momentum approximation and the semi-geostrophic equations,, J. Atmos. Sci., 32 (1975), 233.  doi: 10.1175/1520-0469(1975)032<0233:TGMAAT>2.0.CO;2.  Google Scholar

[13]

J. Isenberg and J. E. Marsden, A slice theorem for the space of solutions of Einstein's equations,, Phys. Rep., 89 (1982), 179.  doi: 10.1016/0370-1573(82)90066-7.  Google Scholar

[14]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems,", 2nd edition, 17 (1999).   Google Scholar

[15]

M. Oliver, Classical solutions for a generalized Euler equations in two dimensions,, J. Math. Anal. Appl., 215 (1997), 471.  doi: 10.1006/jmaa.1997.5647.  Google Scholar

[16]

M. Oliver, Variational asymptotics for rotating shallow water near geostrophy: A transformational approach,, J. Fluid Mech., 551 (2006), 197.  doi: 10.1017/S0022112005008256.  Google Scholar

[17]

M. Oliver and S. Vasylkevych, Generalized LSG models with variable Coriolis parameter,, submitted for publication, (2011).   Google Scholar

[18]

R. Palais, "Foundations of Global Non-Linear Analysis,", W. A. Benjamin, (1968).   Google Scholar

[19]

I. Roulston and M. J. Sewell, The Mathematical structure of theories of semigeostrophic type,, Philos. Trans. Roy. Soc. London Ser. A, 355 (1997), 2489.  doi: 10.1098/rsta.1997.0144.  Google Scholar

[20]

R. Salmon, New equations for nearly geostrophic flow,, J. Fluid Mech., 153 (1985), 461.  doi: 10.1017/S0022112085001343.  Google Scholar

[21]

R. Salmon, Large-scale semi-geostrophic equations for use in ocean circulation models,, J. Fluid Mech., 318 (1996), 85.  doi: 10.1017/S0022112096007045.  Google Scholar

[22]

R. Salmon, "Lectures on Geophysical Fluid Dynamics,", Oxford University Press, (1998).   Google Scholar

[23]

S. Shkoller, Geometry and curvature of diffeomorphism groups with $H^1$ metric and mean hydrodynamics,, J. Funct. Anal., 160 (1998), 337.  doi: 10.1006/jfan.1998.3335.  Google Scholar

[24]

R. Temam, On the Euler equations of incompressible perfect fluids,, J. Funct. Anal., 20 (1975), 32.  doi: 10.1016/0022-1236(75)90052-X.  Google Scholar

[25]

S. Vasylkevych and J. E. Marsden, The Lie-Poisson structure of the Euler equations of an ideal fluid,, Dynam. Part. Differ. Eq., 2 (2005), 281.   Google Scholar

[1]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[2]

Werner Bauer, François Gay-Balmaz. Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations. Journal of Computational Dynamics, 2019, 6 (1) : 1-37. doi: 10.3934/jcd.2019001

[3]

Julien Chambarel, Christian Kharif, Olivier Kimmoun. Focusing wave group in shallow water in the presence of wind. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 773-782. doi: 10.3934/dcdsb.2010.13.773

[4]

Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239

[5]

Anna Geyer, Ronald Quirchmayr. Shallow water models for stratified equatorial flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4533-4545. doi: 10.3934/dcds.2019186

[6]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[7]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

[8]

Denys Dutykh, Dimitrios Mitsotakis. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 799-818. doi: 10.3934/dcdsb.2010.13.799

[9]

Madalina Petcu, Roger Temam. An interface problem: The two-layer shallow water equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5327-5345. doi: 10.3934/dcds.2013.33.5327

[10]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375

[11]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[12]

Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331

[13]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[14]

Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085

[15]

Vikas S. Krishnamurthy. The vorticity equation on a rotating sphere and the shallow fluid approximation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6261-6276. doi: 10.3934/dcds.2019273

[16]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[17]

Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks & Heterogeneous Media, 2016, 11 (1) : 145-162. doi: 10.3934/nhm.2016.11.145

[18]

Aimin Huang, Roger Temam. The nonlinear 2D subcritical inviscid shallow water equations with periodicity in one direction. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2005-2038. doi: 10.3934/cpaa.2014.13.2005

[19]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

[20]

Joachim Escher, Boris Kolev. Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. Journal of Geometric Mechanics, 2014, 6 (3) : 335-372. doi: 10.3934/jgm.2014.6.335

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]