\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Typical points for one-parameter families of piecewise expanding maps of the interval

Abstract Related Papers Cited by
  • For one-parameter families of piecewise expanding maps of the interval we establish sufficient conditions such that a given point in the interval is typical for the absolutely continuous invariant measure for a full Lebesgue measure set of parameters. In particular, we consider $C^{1,1}(L)$-versions of $\beta$-transformations, piecewise expanding unimodal maps, and Markov structure preserving one-parameter families. For families of piecewise expanding unimodal maps we show that the turning point is almost surely typical whenever the family is transversal.
    Mathematics Subject Classification: Primary: 37E05, 37A05; Secondary: 37D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Baladi, On the susceptibility function of piecewise expanding interval maps, Comm. Math. Phys., 275 (2007), 839-859.doi: 10.1007/s00220-007-0320-5.

    [2]

    V. Baladi and D. Smania, Linear response formula for piecewise expanding unimodal maps, Nonlinearity, 21 (2008), 677-711.doi: 10.1088/0951-7715/21/4/003.

    [3]

    V. Baladi and D. Smania, Smooth deformation of piecewise expanding unimodal maps, Discrete Contin. Dyn. Syst., 23 (2009), 685-703.doi: 10.3934/dcds.2009.23.685.

    [4]

    M. Benedicks and L. Carleson, On iterations of $1-ax^2$ on $(-1,1)$, Ann. of Math. (2), 122 (1985), 1-25.doi: 10.2307/1971367.

    [5]

    M. Björklund and D. Schnellmann, Almost sure equidistribution in expansive families, Indag. Math. (N.S.), 20 (2009), 167-177.

    [6]

    K. Brucks and M. Misiurewicz, The trajectory of the turning point is dense for almost all tent maps, Ergodic Theory Dynam. Systems, 16 (1996), 1173-1183.doi: 10.1017/S0143385700009962.

    [7]

    H. Bruin, For almost every tent-map, the turning point is typical, Fund. Math., 155 (1998), 215-235.

    [8]

    P. Collet and J.-P. Eckmann, "Iterated Maps on the Interval as Dynamical Systems," Birkhäuser, Boston, 1980.

    [9]

    B. Faller and C.-E. Pfister, A point is normal for almost all maps $\beta x+\alpha\mod1$ or generalized $\beta$-transformations, Ergodic Theory Dynam. Systems, 29 (2009), 1529-1547.doi: 10.1017/S0143385708000874.

    [10]

    A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481-488.doi: 10.1090/S0002-9947-1973-0335758-1.

    [11]

    T.-Y. Li and J. A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc., 235 (1978), 183-192.doi: 10.1090/S0002-9947-1978-0457679-0.

    [12]

    P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces (Cambridge studies in advanced mathematics)," Cambridge University Press, Cambridge, 1995.

    [13]

    M. Misiurewicz and E. Visinescu, Kneading sequences of skew tent maps, Ann. Inst. H. Poincaré Probab. Statist., 27 (1991), 125-140.

    [14]

    V. A. Rohlin, Exact endomorphisms of a Lebesgue space, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499-530, (English) Amer. Math. Soc. Transl. Ser. 2, 39 (1964), 1-36.

    [15]

    J. Schmeling, Symbolic dynamics for $\beta$-shifts and self-normal numbers, Ergodic Theory Dynam. Systems, 17 (1997), 675-694.doi: 10.1017/S0143385797079182.

    [16]

    M. Tsujii, Lyapunov exponents in families of one-dimensional dynamical systems, Invent. Math., 111 (1993), 113-137.doi: 10.1007/BF01231282.

    [17]

    G. Wagner, The ergodic behaviour of piecewise monotonic transformations, Z. Wahrsch. Verw. Gebiete, 46 (1979), 317-324.doi: 10.1007/BF00538119.

    [18]

    S. Wong, Some metric properties of piecewise monotonic mappings of the unit interval, Trans. Amer. Math. Soc., 246 (1978), 493-500.doi: 10.1090/S0002-9947-1978-0515555-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(76) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return