-
Previous Article
On the index problem of $C^1$-generic wild homoclinic classes in dimension three
- DCDS Home
- This Issue
-
Next Article
Frequency locking of modulated waves
Typical points for one-parameter families of piecewise expanding maps of the interval
1. | Ecole Normale Supérieure, Départment de mathématiques et applications (DMA), 45 rue d’Ulm 75230 Paris cedex 05, France |
References:
[1] |
V. Baladi, On the susceptibility function of piecewise expanding interval maps, Comm. Math. Phys., 275 (2007), 839-859.
doi: 10.1007/s00220-007-0320-5. |
[2] |
V. Baladi and D. Smania, Linear response formula for piecewise expanding unimodal maps, Nonlinearity, 21 (2008), 677-711.
doi: 10.1088/0951-7715/21/4/003. |
[3] |
V. Baladi and D. Smania, Smooth deformation of piecewise expanding unimodal maps, Discrete Contin. Dyn. Syst., 23 (2009), 685-703.
doi: 10.3934/dcds.2009.23.685. |
[4] |
M. Benedicks and L. Carleson, On iterations of $1-ax^2$ on $(-1,1)$, Ann. of Math. (2), 122 (1985), 1-25.
doi: 10.2307/1971367. |
[5] |
M. Björklund and D. Schnellmann, Almost sure equidistribution in expansive families, Indag. Math. (N.S.), 20 (2009), 167-177. |
[6] |
K. Brucks and M. Misiurewicz, The trajectory of the turning point is dense for almost all tent maps, Ergodic Theory Dynam. Systems, 16 (1996), 1173-1183.
doi: 10.1017/S0143385700009962. |
[7] |
H. Bruin, For almost every tent-map, the turning point is typical, Fund. Math., 155 (1998), 215-235. |
[8] |
P. Collet and J.-P. Eckmann, "Iterated Maps on the Interval as Dynamical Systems," Birkhäuser, Boston, 1980. |
[9] |
B. Faller and C.-E. Pfister, A point is normal for almost all maps $\beta x+\alpha\mod1$ or generalized $\beta$-transformations, Ergodic Theory Dynam. Systems, 29 (2009), 1529-1547.
doi: 10.1017/S0143385708000874. |
[10] |
A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481-488.
doi: 10.1090/S0002-9947-1973-0335758-1. |
[11] |
T.-Y. Li and J. A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc., 235 (1978), 183-192.
doi: 10.1090/S0002-9947-1978-0457679-0. |
[12] |
P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces (Cambridge studies in advanced mathematics)," Cambridge University Press, Cambridge, 1995. |
[13] |
M. Misiurewicz and E. Visinescu, Kneading sequences of skew tent maps, Ann. Inst. H. Poincaré Probab. Statist., 27 (1991), 125-140. |
[14] |
V. A. Rohlin, Exact endomorphisms of a Lebesgue space, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499-530, (English) Amer. Math. Soc. Transl. Ser. 2, 39 (1964), 1-36. |
[15] |
J. Schmeling, Symbolic dynamics for $\beta$-shifts and self-normal numbers, Ergodic Theory Dynam. Systems, 17 (1997), 675-694.
doi: 10.1017/S0143385797079182. |
[16] |
M. Tsujii, Lyapunov exponents in families of one-dimensional dynamical systems, Invent. Math., 111 (1993), 113-137.
doi: 10.1007/BF01231282. |
[17] |
G. Wagner, The ergodic behaviour of piecewise monotonic transformations, Z. Wahrsch. Verw. Gebiete, 46 (1979), 317-324.
doi: 10.1007/BF00538119. |
[18] |
S. Wong, Some metric properties of piecewise monotonic mappings of the unit interval, Trans. Amer. Math. Soc., 246 (1978), 493-500.
doi: 10.1090/S0002-9947-1978-0515555-9. |
show all references
References:
[1] |
V. Baladi, On the susceptibility function of piecewise expanding interval maps, Comm. Math. Phys., 275 (2007), 839-859.
doi: 10.1007/s00220-007-0320-5. |
[2] |
V. Baladi and D. Smania, Linear response formula for piecewise expanding unimodal maps, Nonlinearity, 21 (2008), 677-711.
doi: 10.1088/0951-7715/21/4/003. |
[3] |
V. Baladi and D. Smania, Smooth deformation of piecewise expanding unimodal maps, Discrete Contin. Dyn. Syst., 23 (2009), 685-703.
doi: 10.3934/dcds.2009.23.685. |
[4] |
M. Benedicks and L. Carleson, On iterations of $1-ax^2$ on $(-1,1)$, Ann. of Math. (2), 122 (1985), 1-25.
doi: 10.2307/1971367. |
[5] |
M. Björklund and D. Schnellmann, Almost sure equidistribution in expansive families, Indag. Math. (N.S.), 20 (2009), 167-177. |
[6] |
K. Brucks and M. Misiurewicz, The trajectory of the turning point is dense for almost all tent maps, Ergodic Theory Dynam. Systems, 16 (1996), 1173-1183.
doi: 10.1017/S0143385700009962. |
[7] |
H. Bruin, For almost every tent-map, the turning point is typical, Fund. Math., 155 (1998), 215-235. |
[8] |
P. Collet and J.-P. Eckmann, "Iterated Maps on the Interval as Dynamical Systems," Birkhäuser, Boston, 1980. |
[9] |
B. Faller and C.-E. Pfister, A point is normal for almost all maps $\beta x+\alpha\mod1$ or generalized $\beta$-transformations, Ergodic Theory Dynam. Systems, 29 (2009), 1529-1547.
doi: 10.1017/S0143385708000874. |
[10] |
A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481-488.
doi: 10.1090/S0002-9947-1973-0335758-1. |
[11] |
T.-Y. Li and J. A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc., 235 (1978), 183-192.
doi: 10.1090/S0002-9947-1978-0457679-0. |
[12] |
P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces (Cambridge studies in advanced mathematics)," Cambridge University Press, Cambridge, 1995. |
[13] |
M. Misiurewicz and E. Visinescu, Kneading sequences of skew tent maps, Ann. Inst. H. Poincaré Probab. Statist., 27 (1991), 125-140. |
[14] |
V. A. Rohlin, Exact endomorphisms of a Lebesgue space, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499-530, (English) Amer. Math. Soc. Transl. Ser. 2, 39 (1964), 1-36. |
[15] |
J. Schmeling, Symbolic dynamics for $\beta$-shifts and self-normal numbers, Ergodic Theory Dynam. Systems, 17 (1997), 675-694.
doi: 10.1017/S0143385797079182. |
[16] |
M. Tsujii, Lyapunov exponents in families of one-dimensional dynamical systems, Invent. Math., 111 (1993), 113-137.
doi: 10.1007/BF01231282. |
[17] |
G. Wagner, The ergodic behaviour of piecewise monotonic transformations, Z. Wahrsch. Verw. Gebiete, 46 (1979), 317-324.
doi: 10.1007/BF00538119. |
[18] |
S. Wong, Some metric properties of piecewise monotonic mappings of the unit interval, Trans. Amer. Math. Soc., 246 (1978), 493-500.
doi: 10.1090/S0002-9947-1978-0515555-9. |
[1] |
Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101 |
[2] |
Tomas Persson. Typical points and families of expanding interval mappings. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4019-4034. doi: 10.3934/dcds.2017170 |
[3] |
Jiu Ding, Aihui Zhou. Absolutely continuous invariant measures for piecewise $C^2$ and expanding mappings in higher dimensions. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 451-458. doi: 10.3934/dcds.2000.6.451 |
[4] |
Jawad Al-Khal, Henk Bruin, Michael Jakobson. New examples of S-unimodal maps with a sigma-finite absolutely continuous invariant measure. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 35-61. doi: 10.3934/dcds.2008.22.35 |
[5] |
Lucia D. Simonelli. Absolutely continuous spectrum for parabolic flows/maps. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 263-292. doi: 10.3934/dcds.2018013 |
[6] |
Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685 |
[7] |
Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917 |
[8] |
Magnus Aspenberg, Viviane Baladi, Juho Leppänen, Tomas Persson. On the fractional susceptibility function of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 679-706. doi: 10.3934/dcds.2021133 |
[9] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[10] |
Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105 |
[11] |
Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753 |
[12] |
Nigel P. Byott, Mark Holland, Yiwei Zhang. On the mixing properties of piecewise expanding maps under composition with permutations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3365-3390. doi: 10.3934/dcds.2013.33.3365 |
[13] |
Peyman Eslami. Inducing schemes for multi-dimensional piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 353-368. doi: 10.3934/dcds.2021120 |
[14] |
Oliver Butterley. An alternative approach to generalised BV and the application to expanding interval maps. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3355-3363. doi: 10.3934/dcds.2013.33.3355 |
[15] |
Xavier Bressaud. Expanding interval maps with intermittent behaviour, physical measures and time scales. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 517-546. doi: 10.3934/dcds.2004.11.517 |
[16] |
Fawwaz Batayneh, Cecilia González-Tokman. On the number of invariant measures for random expanding maps in higher dimensions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5887-5914. doi: 10.3934/dcds.2021100 |
[17] |
Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140 |
[18] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[19] |
Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673 |
[20] |
Adrian Tudorascu. On absolutely continuous curves of probabilities on the line. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5105-5124. doi: 10.3934/dcds.2019207 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]