\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the index problem of $C^1$-generic wild homoclinic classes in dimension three

Abstract / Introduction Related Papers Cited by
  • We study the dynamics of homoclinic classes on three dimensional manifolds under the robust absence of dominated splittings. We prove that, $C^1$-generically, if such a homoclinic class contains a volume-expanding periodic point, then it contains a hyperbolic periodic point whose index (dimension of the unstable manifold) is equal to two.
    Mathematics Subject Classification: Primary: 37D25, 3730, Secondary: 34D09.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Abdenur, Ch. Bonatti, S. Crovisier, L. Díaz and L. Wen, Periodic points and homoclinic classes, Ergodic Theory Dynam. Systems, 27 (2007), 1-22.doi: 10.1017/S0143385706000538.

    [2]

    C. Bonatti and S. Crovisier, Récurrence et généricité, Invent. Math., 158 (2004), 33-104.

    [3]

    C. Bonatti and L. Díaz, On maximal transitive sets of generic diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., 96 (2002), 171-197.

    [4]

    C. Bonatti and L. Díaz, Robust heterodimensional cycles and $C^1$-generic dynamics, J. Inst. Math. Jussieu, 7 (2008), 469-525.doi: 10.1017/S1474748008000030.

    [5]

    C. Bonatti, L. Díaz and S. KirikiStabilization of heterodimensional cycles, preprint, arXiv:1104.0980.

    [6]

    C. Bonatti, L. Díaz and E. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. (2), 158 (2003), 355-418.doi: 10.4007/annals.2003.158.355.

    [7]

    C. Bonatti, L. Díaz and M. Viana, "Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective," Encyclopaedia of Mathematical Sciences, 102, Mathematical Physics, III, Springer-Verlag, Berlin, 2005.

    [8]

    S. Gan, A necessary and sufficient condition for the existence of dominated splitting with a given index, Trends in Mathematics, 7 (2004), 143-168.

    [9]

    N. GourmelonA Franks' lemma that preserves invariant manifolds, Preprint, arXiv:0912.1121.

    [10]

    N. Gourmelon, Generation of homoclinic tangencies by $C^1$-perturbations, Discrete Contin. Dyn. Syst., 26, (2010), 1-42.doi: 10.3934/dcds.2010.26.1.

    [11]

    R. Mañé, An ergodic closing lemma, Ann. of Math. (2), 116 (1982), 503-540.

    [12]

    J. Palis, Open questions leading to a global perspective in dynamics, Nonlinearity, 21 (2008), T37-T43.doi: 10.1088/0951-7715/21/4/T01.

    [13]

    E. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math. (2), 151 (2000), 961-1023.doi: 10.2307/121127.

    [14]

    C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos," 2nd edition, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1999.

    [15]

    S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.doi: 10.1090/S0002-9904-1967-11798-1.

    [16]

    K. Shinohara, An example of C1-generically wild homoclinic classes with index deficiency, Nonlinearity, 24 (2011), 1961-1974.doi: 10.1088/0951-7715/24/7/003.

    [17]

    L. Wen, Homoclinic tangencies and dominated splittings, Nonlinearity, 15 (2002), 1445-1469.doi: 10.1088/0951-7715/15/5/306.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(99) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return