Citation: |
[1] |
R. P. Agarwal, "Difference Equations and Inequalities," 2nd edition, Pure and Applied Mathematics, 228, Marcel Dekker, Inc., New York, 2000. |
[2] |
A. I. Alonso, J. Hong and R. Obaya, Exponential dichotomy and trichotomy for difference equations, Comput. Math. Appl., 38 (1999), 41-49.doi: 10.1016/S0898-1221(99)00167-4. |
[3] |
L. Arnold, "Random Dynamical Systems," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. |
[4] |
B. Aulbach and S. Siegmund, The dichotomy spectrum for noninvertible systems of linear difference equations, J. Difference Equ. Appl., 7 (2001), 895-913. |
[5] |
_____, A spectral theory for nonautonomous difference equations, New Trends in Difference Equations (Temuco, Chile, 2000) (eds. J. López-Fenner, et al.), Taylor & Francis, London, (2002), 45-55. |
[6] |
B. Aulbach, A reduction principle for nonautonomous differential equations, Archiv der Mathematik, 39 (1982), 217-232.doi: 10.1007/BF01899528. |
[7] |
B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations, II, J. Difference Equ. Appl., 2 (1996), 251-262. |
[8] |
A. Ben-Artzi and I. Gohberg, Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts, Integral Equations Oper. Theory, 14 (1991), 613-677.doi: 10.1007/BF01200554. |
[9] |
_____, Dichotomies of perturbed time varying systems and the power method, Indiana Univ. Math. J., 42 (1993), 699-720.doi: 10.1512/iumj.1993.42.42031. |
[10] |
A. G. Baskakov, Invertibility and the Fredholm property of difference operators, Mathematical Notes, 67 (2000), 690-698. |
[11] |
W. A. Coppel, "Stability and Asymptotic Behavior of Differential Equations," D. C. Heath and Co., Boston, Mass., 1965. |
[12] |
_____, "Dichotomies in Stability Theory," Lect. Notes Math., 629, Springer-Verlag, Berlin-New York, 1978. |
[13] |
J. L. Dalec'kiĭ and M. G. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space," Translations of Mathematical Monographs, 43, American Mathematical Society, Providence, RI, 1974. |
[14] |
L. Dieci and E. S. van Vleck, Lyapunov and Sacker-Sell spectral intervals, J. Dyn. Differ. Equations, 19 (2007), 265-293. |
[15] |
S. Elaydi and O. Hajek, Exponential trichotomy of differential systems, J. Math. Anal. Appl., 129 (1988), 362-374.doi: 10.1016/0022-247X(88)90255-7. |
[16] |
S. Elaydi and K. Janglajew, Dichotomy and trichotomy of difference equations, J. Difference Equ. Appl., 3 (1998), 417-448. |
[17] |
D. Henry, Geometric theory of semilinear parabolic equations, Lect. Notes Math., 840, Springer, Berlin-New York, 1981. |
[18] |
J. M. Holtzman, Explicit $\epsilon$ and $\delta$ for the implicit function theorem, SIAM Review, 12 (1970), 284-286.doi: 10.1137/1012051. |
[19] |
T. Hüls, Computing Sacker-Sell spectra in discrete time dynamical systems, SIAM J. Numer. Anal., 48 (2010), 2043-2064.doi: 10.1137/090754509. |
[20] |
R. A. Johnson, P. E. Kloeden and R. Pavani, Two-step transitions in nonautonomous bifurcations: An explanation, Stoch. Dyn., 2 (2002), 67-92.doi: 10.1142/S0219493702000297. |
[21] |
T. Kato, "Perturbation Theory for Linear Operators," reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995. |
[22] |
K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differ. Equations, 55 (1984), 225-256.doi: 10.1016/0022-0396(84)90082-2. |
[23] |
_____, Exponential dichotomies for almost periodic equations, Proc. Am. Math. Soc., 101 (1987), 293-298.doi: 10.1090/S0002-9939-1987-0902544-6. |
[24] |
_____, Exponential dichotomies and Fredholm operators, Proc. Am. Math. Soc., 104 (1988), 149-156.doi: 10.1090/S0002-9939-1988-0958058-1. |
[25] |
G. Papaschinopoulos, Exponential dichotomy for almost periodic linear difference equations, Ann. Soc. Sci. Bruxelles, Sér. I, 102 (1988), 19-28. |
[26] |
_____, On exponential trichotomy of linear difference equations, Appl. Anal., 40 (1991), 89-109.doi: 10.1080/00036819108839996. |
[27] |
C. Pötzsche, Stability of center fiber bundles for nonautonomous difference equations, in "Difference and Differential Equations" (eds. S. Elaydi, et al), Fields Institute Communications, 42, American Mathematical Society, Providence, RI, (2004), 295-304. |
[28] |
_____, A note on the dichotomy spectrum, J. Difference Equ. Appl., 15 (2009), 1021-1025. |
[29] |
_____, Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach, Discrete and Continuous Dynamical Systems (Series B), 14 (2010), 739-776.doi: 10.3934/dcdsb.2010.14.739. |
[30] |
_____, Nonautonomous continuation of bounded solutions, Commun. Pure Appl. Anal., 10 (2011), 937-961. |
[31] |
C. Pötzsche and M. Rasmussen, Local approximation of invariant fiber bundles: An algorithmic approach, in "Difference Equations and Discrete Dynamical Systems" (eds. R. J. Sacker, et al), World Scientific, Hackensack, NJ, 2005, 155-170. |
[32] |
_____, Taylor approximation of invariant fiber bundles for nonautonomous difference equations, Nonlin. Analysis, 60 (2005), 1303-1330.doi: 10.1016/j.na.2004.10.019. |
[33] |
_____, Taylor approximation of integral manifolds, J. Dyn. Differ. Equations, 18 (2006), 427-460. |
[34] |
S. Siegmund, Dichotomy spectrum for nonautonomous differential equations, J. Dyn. Differ. Equations, 14 (2002), 243-258. |
[35] |
R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differ. Equations, 27 (1978), 320-358.doi: 10.1016/0022-0396(78)90057-8. |
[36] |
G. R. Sell and Y. You, "Dynamics of Evolutionary Equations," Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002. |
[37] |
E. Zeidler, "Nonlinear Functional Analysis and its Applications. I. (Fixed-Point Theorems)," Springer-Verlag, New York, 1986. |