September  2011, 31(3): 975-983. doi: 10.3934/dcds.2011.31.975

A Harnack inequality for fractional Laplace equations with lower order terms

1. 

Departamento de Matemática, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso, Chile

2. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Received  February 2010 Revised  May 2011 Published  August 2011

We establish a Harnack inequality of fractional Laplace equations without imposing sign condition on the coefficient of zero order term via the Moser's iteration and John-Nirenberg inequality.
Citation: Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975
References:
[1]

R. F. Bass and D. A. Levin, Harnack inequalities for jump processes,, Potential Anal., 17 (2002), 375.  doi: 10.1023/A:1016378210944.  Google Scholar

[2]

X. Cabre and Y. Sire, Nonlinear equations for fractional laplacians I: Regularity, maximum principles, and hamiltonian estimates,, preprint, ().   Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.   Google Scholar

[4]

Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes,, Math. Ann., 312 (1998), 465.  doi: 10.1007/s002080050232.  Google Scholar

[5]

E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations,, Comm. Partial Differential Equations, 7 (1982), 77.   Google Scholar

[6]

Q. Han and F.-H. Lin, "Elliptic Partial Differential Equations,", Courant Lecture Notes in Mathematics, 1 (1997).   Google Scholar

[7]

Z.-C. Han and Y. Y. Li, The Yamabe problem on manifolds with boundary: Existence and compactness results,, Duke Math. J., 99 (1999), 489.  doi: 10.1215/S0012-7094-99-09916-7.  Google Scholar

[8]

F. John and L. Nirenberg, On functions of bounded mean oscillation,, Comm. Pure Appl. Math., 14 (1961), 415.  doi: 10.1002/cpa.3160140317.  Google Scholar

[9]

M. Kassmann, The classical Harnack inequality fails for non-local operators,, preprint., ().   Google Scholar

[10]

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals,, Trans. Amer. Math. Soc., 192 (1974), 261.  doi: 10.1090/S0002-9947-1974-0340523-6.  Google Scholar

[11]

E. Stein, "Singular Integrals and Differentiability Properties of Function,", Princeton Mathematical Series, 30 (1970).   Google Scholar

show all references

References:
[1]

R. F. Bass and D. A. Levin, Harnack inequalities for jump processes,, Potential Anal., 17 (2002), 375.  doi: 10.1023/A:1016378210944.  Google Scholar

[2]

X. Cabre and Y. Sire, Nonlinear equations for fractional laplacians I: Regularity, maximum principles, and hamiltonian estimates,, preprint, ().   Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.   Google Scholar

[4]

Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes,, Math. Ann., 312 (1998), 465.  doi: 10.1007/s002080050232.  Google Scholar

[5]

E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations,, Comm. Partial Differential Equations, 7 (1982), 77.   Google Scholar

[6]

Q. Han and F.-H. Lin, "Elliptic Partial Differential Equations,", Courant Lecture Notes in Mathematics, 1 (1997).   Google Scholar

[7]

Z.-C. Han and Y. Y. Li, The Yamabe problem on manifolds with boundary: Existence and compactness results,, Duke Math. J., 99 (1999), 489.  doi: 10.1215/S0012-7094-99-09916-7.  Google Scholar

[8]

F. John and L. Nirenberg, On functions of bounded mean oscillation,, Comm. Pure Appl. Math., 14 (1961), 415.  doi: 10.1002/cpa.3160140317.  Google Scholar

[9]

M. Kassmann, The classical Harnack inequality fails for non-local operators,, preprint., ().   Google Scholar

[10]

B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals,, Trans. Amer. Math. Soc., 192 (1974), 261.  doi: 10.1090/S0002-9947-1974-0340523-6.  Google Scholar

[11]

E. Stein, "Singular Integrals and Differentiability Properties of Function,", Princeton Mathematical Series, 30 (1970).   Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[3]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[4]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[5]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[6]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[7]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[8]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[9]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[10]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[11]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[12]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[13]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[14]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[17]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[18]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[19]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[20]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (128)
  • HTML views (0)
  • Cited by (37)

Other articles
by authors

[Back to Top]