\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Weighted Green functions of nondegenerate polynomial skew products on $\mathbb{C}^2$

Abstract Related Papers Cited by
  • We consider the dynamics of nondegenerate polynomial skew products on $\mathbb{C}^{2}$. The paper includes investigations of the existence of the Green and fiberwise Green functions of the maps, which induce generalized Green functions that are well-behaved on $\mathbb{C}^{2}$, and examples of the Green functions which are not defined on some curves in $\mathbb{C}^{2}$. Moreover, we consider the dynamics of the extensions of the maps to holomorphic or rational maps on weighted projective spaces.
    Mathematics Subject Classification: Primary: 32H50; Secondary: 30D05, 37H99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Bedford and M. Jonsson, Dynamics of regular polynomial endomorphisms of $\mathbbC^k$, Amer. J. Math., 122 (2000), 153-212.

    [2]

    E. Bedford and J. Smillie, Polynomial diffeomorphisms of $\mathbbC^2$: Currents, equilibrium measure and hyperbolicity, Invent. Math., 103 (1991), 69-99.doi: 10.1007/BF01239509.

    [3]

    L. DeMarco and S. L. Hruska, Axiom A polynomial skew products of $\mathbbC^2$ and their postcritical sets, Ergodic Theory Dynam. Systems, 28 (2008), 1749-1779.doi: 10.1017/S0143385708000047.

    [4]

    T.-C. Dinh and N. Sibony, Dynamique des applications polynomiales semi-régulières, (French) [Dynamics of semiregular polynomial maps], Ark. Mat., 42 (2004), 61-85.

    [5]

    T.-C. Dinh, R. Dujardin and N. Sibony, On the dynamics near infinity of some polynomial mappings in $\mathbbC^2$, Math. Ann., 333 (2005), 703-739.doi: 10.1007/s00208-005-0661-3.

    [6]

    C. Favre and V. Guedj, Dynamique des applications rationnelles des espaces multiprojectifs, (French) [Dynamics of rational mappings of multiprojective spaces], Indiana Univ. Math. J., 50 (2001), 881-934.doi: 10.1512/iumj.2001.50.1880.

    [7]

    C. Favre and M. Jonsson, Eigenvaluations, Ann. Sci. École Norm. Sup., 40 (2007), 309-349.

    [8]

    C. Favre and M. Jonsson, Dynamical compactifications of $\mathbbC^2$, Ann. of Math., 173 (2011), 211-248.doi: 10.4007/annals.2011.173.1.6.

    [9]

    V. Guedj, Dynamics of polynomial mappings of $\mathbbC^2$, Amer. J. Math., 124 (2002), 75-106.doi: 10.1353/ajm.2002.0002.

    [10]

    V. Guedj, Dynamics of quadratic polynomial mappings of $\mathbbC^2$, Michigan Math. J., 52 (2004), 627-648.doi: 10.1307/mmj/1100623417.

    [11]

    S.-M. Heinemann, Julia sets for holomorphic endomorphisms of $\mathbbC^n$, Ergodic Theory Dynam. Systems, 16 (1996), 1275-1296.doi: 10.1017/S0143385700010026.

    [12]

    S.-M. Heinemann, Julia sets of skew products in $\mathbbC^2$, Kyushu J. Math., 52 (1998), 299-329.doi: 10.2206/kyushujm.52.299.

    [13]

    M. Jonsson, Dynamics of polynomial skew products on $\mathbbC^2$, Math. Ann., 314 (1999), 403-447.doi: 10.1007/s002080050301.

    [14]

    T. Ueda, Fatou sets in complex dynamics on projective spaces, J. Math. Soc. Japan, 46 (1994), 545-555.doi: 10.2969/jmsj/04630545.

    [15]

    K. Ueno, Symmetries of Julia sets of nondegenerate polynomial skew products on $\mathbbC^2$, Michigan Math. J., 59 (2010), 153-168.doi: 10.1307/mmj/1272376030.

    [16]

    G. Vigny, Dynamics semi-conjugated to a subshift for some polynomial mappings in $\mathbbC^2$, Publ. Mat., 51 (2007), 201-222.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(76) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return