January  2012, 32(1): 101-124. doi: 10.3934/dcds.2012.32.101

Traveling wave solution for a lattice dynamical system with convolution type nonlinearity

1. 

Department of Mathematics, Tamkang University, 151, Ying-Chuan Road, Tamsui, Taipei County 25137

2. 

Department of Mathematics, National Taiwan Normal University, 88, S-4, Ting Chou Road, Taipei 11677, Taiwan

Received  August 2010 Revised  December 2010 Published  September 2011

We study traveling wave solutions for a lattice dynamical system with convolution type nonlinearity. We consider the monostable case and discuss the asymptotic behaviors, monotonicity and uniqueness of traveling wave. First, we characterize the asymptotic behavior of wave profile at both wave tails. Next, we prove that any wave profile is strictly decreasing. Finally, we prove the uniqueness (up to translation) of wave profile for each given admissible wave speed.
Citation: Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101
References:
[1]

P. W. Bates, P. C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions,, Arch. Rational Mech. Anal., 138 (1997), 105.  doi: 10.1007/s002050050037.  Google Scholar

[2]

P. W. Bates, X. Chen and A. Chmaj, Traveling waves of bistable dynamics on a lattice,, SIAM J. Math. Anal., 35 (2003), 520.  doi: 10.1137/S0036141000374002.  Google Scholar

[3]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations,, Proc. Amer. Math. Soc., 132 (2004), 2433.  doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[4]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations,, Advances in Differential Equations, 2 (1997), 125.   Google Scholar

[5]

X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices,, SIAM J. Math. Anal., 38 (2006), 233.  doi: 10.1137/050627824.  Google Scholar

[6]

X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations,, J. Differential Equations, 184 (2002), 549.   Google Scholar

[7]

X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics,, Math. Ann., 326 (2003), 123.  doi: 10.1007/s00208-003-0414-0.  Google Scholar

[8]

J. Coville and L. Dupaigne, Travelling fronts in integrodifferential equations,, C. R. Math. Acad. Sci. Paris, 337 (2003), 25.   Google Scholar

[9]

J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations,, Nonlinear Anal., 60 (2005), 797.  doi: 10.1016/j.na.2003.10.030.  Google Scholar

[10]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727.  doi: 10.1017/S0308210504000721.  Google Scholar

[11]

S.-C. Fu, J.-S. Guo and S.-Y. Shieh, Traveling wave solutions for some discrete quasilinear parabolic equations,, Nonlinear Analysis Series A, 48 (2002), 1137.  doi: 10.1016/S0362-546X(00)00242-X.  Google Scholar

[12]

W. Hudson and B. Zinner, Existence of traveling waves for reaction diffusion equations of Fisher type in periodic media,, World Sci. Publ., 1 (1995), 187.   Google Scholar

[13]

G. Lv, Asymptotic behavior of traveling fronts and entire solutions for a nonlinear monostable equation,, Nonlinear Analysis, 72 (2010), 3659.  doi: 10.1016/j.na.2009.12.047.  Google Scholar

[14]

S. Ma and X. Zou, Existence, uniqueness and stability of traveling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54.   Google Scholar

[15]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction,, J. Differential Equations, 212 (2005), 129.   Google Scholar

[16]

S. Ma, P. Weng and X. Zou, Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation,, Nonlinear Analysis, 65 (2006), 1858.  doi: 10.1016/j.na.2005.10.042.  Google Scholar

[17]

K. Schumacher, Travelling-front solutions for integro-differential equations,, J. Reine Angew. Math., 316 (1980), 54.  doi: 10.1515/crll.1980.316.54.  Google Scholar

[18]

P. Weng, H. Huang and J. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Math., 68 (2003), 409.  doi: 10.1093/imamat/68.4.409.  Google Scholar

[19]

B. Zinner, Stability of traveling wavefronts for the discrete Nagumo equation,, SIAM J. Math. Anal., 22 (1991), 1016.  doi: 10.1137/0522066.  Google Scholar

[20]

B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation,, J. Differential Equations, 96 (1992), 1.   Google Scholar

[21]

B. Zinner, G. Harris and W. Hudson, Traveling wavefronts for the discrete Fisher's equation,, J. Differential Equations, 105 (1993), 46.   Google Scholar

show all references

References:
[1]

P. W. Bates, P. C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions,, Arch. Rational Mech. Anal., 138 (1997), 105.  doi: 10.1007/s002050050037.  Google Scholar

[2]

P. W. Bates, X. Chen and A. Chmaj, Traveling waves of bistable dynamics on a lattice,, SIAM J. Math. Anal., 35 (2003), 520.  doi: 10.1137/S0036141000374002.  Google Scholar

[3]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations,, Proc. Amer. Math. Soc., 132 (2004), 2433.  doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[4]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations,, Advances in Differential Equations, 2 (1997), 125.   Google Scholar

[5]

X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices,, SIAM J. Math. Anal., 38 (2006), 233.  doi: 10.1137/050627824.  Google Scholar

[6]

X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations,, J. Differential Equations, 184 (2002), 549.   Google Scholar

[7]

X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics,, Math. Ann., 326 (2003), 123.  doi: 10.1007/s00208-003-0414-0.  Google Scholar

[8]

J. Coville and L. Dupaigne, Travelling fronts in integrodifferential equations,, C. R. Math. Acad. Sci. Paris, 337 (2003), 25.   Google Scholar

[9]

J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations,, Nonlinear Anal., 60 (2005), 797.  doi: 10.1016/j.na.2003.10.030.  Google Scholar

[10]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727.  doi: 10.1017/S0308210504000721.  Google Scholar

[11]

S.-C. Fu, J.-S. Guo and S.-Y. Shieh, Traveling wave solutions for some discrete quasilinear parabolic equations,, Nonlinear Analysis Series A, 48 (2002), 1137.  doi: 10.1016/S0362-546X(00)00242-X.  Google Scholar

[12]

W. Hudson and B. Zinner, Existence of traveling waves for reaction diffusion equations of Fisher type in periodic media,, World Sci. Publ., 1 (1995), 187.   Google Scholar

[13]

G. Lv, Asymptotic behavior of traveling fronts and entire solutions for a nonlinear monostable equation,, Nonlinear Analysis, 72 (2010), 3659.  doi: 10.1016/j.na.2009.12.047.  Google Scholar

[14]

S. Ma and X. Zou, Existence, uniqueness and stability of traveling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54.   Google Scholar

[15]

S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with global interaction,, J. Differential Equations, 212 (2005), 129.   Google Scholar

[16]

S. Ma, P. Weng and X. Zou, Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation,, Nonlinear Analysis, 65 (2006), 1858.  doi: 10.1016/j.na.2005.10.042.  Google Scholar

[17]

K. Schumacher, Travelling-front solutions for integro-differential equations,, J. Reine Angew. Math., 316 (1980), 54.  doi: 10.1515/crll.1980.316.54.  Google Scholar

[18]

P. Weng, H. Huang and J. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Math., 68 (2003), 409.  doi: 10.1093/imamat/68.4.409.  Google Scholar

[19]

B. Zinner, Stability of traveling wavefronts for the discrete Nagumo equation,, SIAM J. Math. Anal., 22 (1991), 1016.  doi: 10.1137/0522066.  Google Scholar

[20]

B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation,, J. Differential Equations, 96 (1992), 1.   Google Scholar

[21]

B. Zinner, G. Harris and W. Hudson, Traveling wavefronts for the discrete Fisher's equation,, J. Differential Equations, 105 (1993), 46.   Google Scholar

[1]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[2]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[5]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[10]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[11]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[12]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[13]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[14]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[17]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[18]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[19]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[20]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]