Advanced Search
Article Contents
Article Contents

Multi-dimensional traveling fronts in bistable reaction-diffusion equations

Abstract Related Papers Cited by
  • This paper studies traveling front solutions of convex polyhedral shapes in bistable reaction-diffusion equations including the Allen-Cahn equations or the Nagumo equations. By taking the limits of such solutions as the lateral faces go to infinity, we construct a three-dimensional traveling front solution for any given $g\in C^{\infty}(S^{1})$ with $\min_{0\leq \theta\leq 2\pi}g(\theta)=0$.
    Mathematics Subject Classification: Primary: 35C07, 35B20; Secondary: 35K57.


    \begin{equation} \\ \end{equation}
  • [1]

    S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta. Metall., 27 (1979), 1084-1095.doi: 10.1016/0001-6160(79)90196-2.


    D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, Partial Differential Equations and Related Topics, ed. J. A. Goldstein, Lecture Notes in Mathematics, 446 (1975) 5-49.


    D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76.doi: 10.1016/0001-8708(78)90130-5.


    H. Berestycki, P. L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $R^N$, Indiana Univ. Math. J. 30 (1981), 141-157.doi: 10.1512/iumj.1981.30.30012.


    J. Buckmaster, Polyhedral flames--an exercise in bimodal bifurcation analysis, SIAM J. Appl. Math., 44 (1984), 40-55.doi: 10.1137/0144005.


    X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.


    X. Chen, J-S. Guo, F. Hamel, H. Ninomiya and J-M. Roquejoffre, Traveling waves with paraboloid like interfaces for balanced bistable dynamics, Ann. I. H. Poincaré, AN 24 (2007), 369-393.


    M. del Pino, M. Kowalczyk and J. WeiOn de Giorgi conjecture in dimension $N\geq9$, Annals of Math. (to appear).


    P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rat. Mech. Anal., 65 (1977), 335-361.doi: 10.1007/BF00250432.


    R. A. Fisher, The advance of advantageous genes, Ann. of Eugenics, 7 (1937), 355-369.doi: 10.1111/j.1469-1809.1937.tb02153.x.


    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,'' Springer-Verlag, Berlin, 1983.


    F. Hamel, R. Monneau and J.-M. Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions, Ann. Scient. Ec. Norm. Sup. 4ème série, t.37 (2004), 469-506.


    F. Hamel, R. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005), 1069-1096.doi: 10.3934/dcds.2005.13.1069.


    F. Hamel, R. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006), 75-92.


    F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $\mathbbR^N$, Arch. Rat. Mech. Anal., 157 (2001), 91-163.doi: 10.1007/PL00004238.


    F. Hamel and J.-M. Roquejoffre, Heteroclinic connections for multidimensional bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 101-123.doi: 10.3934/dcdss.2011.4.101.


    M. Haragus and A. Scheel, Corner defects in almost planar interface propagation, Ann. I. H. Poincaré, AN 23 (2006), 283-329.


    Y. I. Kanel', Certain problems on equations in the theory of burning, Soviet. Math. Dokl., 2 (1961), 48-51.


    Y. I. Kanel', Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory, Mat. Sb. (N.S.), 59 (1962), 245-288.


    T. Kapitula, Multidimensional stability of planar travelling waves, Trans. Amer. Math. Soc., 349 (1997), 257-269.doi: 10.1090/S0002-9947-97-01668-1.


    K. Kawasaki and T. Ohta, Kink dynamics in one-dimensional nonlinear systems, Phys. A, 116 (1982), 573-593.doi: 10.1016/0378-4371(82)90178-9.


    Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal traveling fronts in the Allen-Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1031-1054.doi: 10.1017/S0308210510001253.


    C. D. Levermore and J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation II, Comm. Par. Diff. Eq., 17 (1992), 1901-1924.


    H. Matano, M. Nara and M. Taniguchi, Stability of planar waves in the Allen-Cahn equation, Comm. Par. Diff. Eq. , 34 (2009), 976-1002.


    J. Nagumo, S. Yoshizawa and S. Arimoto, Bistable transmission lines, IEEE Trans. Circuit Theory, CT-12 (1965), 400-412.


    H. Ninomiya and M. Taniguchi, Traveling curved fronts of a mean curvature flow with constant driving force, Free boundary problems: Theory and applications I, GAKUTO Internat. Ser. Math. Sci. Appl., 13 (2000), 206-221.


    H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204-233.doi: 10.1016/j.jde.2004.06.011.


    H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dyn. Syst., 15 (2006), 819-832.doi: 10.3934/dcds.2006.15.819.


    L. A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in $\mathbfR^n$, Arch. Rational Mech. Anal., 81 (1983), 181-197.doi: 10.1007/BF00250651.


    V. Pérez-Muñuzuri, M. Gómez-Gesteira, A. P. Muñuzuri, V. A. Davydov and V. Pérez-Villar, V-shaped stable nonspiral patterns, Physical Review E, 51 (1995), 845-847.


    M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,'' Springer-Verlag, Berlin, 1984.


    J-M. Roquejoffre and V. Roussier-Michon, Nontrivial large-time behaviour in bistable reaction-diffusion equations, Annali di Matematica, 188 (2009), 207-233.


    D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1972), 979-1000.doi: 10.1512/iumj.1972.21.21079.


    N. Shigesada, K. Kawasaki and E. Teramoto, Traveling periodic waves in heterogeneous environments, Theoret. Population Biol., 30 (1986), 143-160.doi: 10.1016/0040-5809(86)90029-8.


    J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.


    F. A. Smith and S. F. Pickering, Bunsen flames of unusual structure, Proceedings of the Symposium on Combustion, Vol. 1-2 (1948), 24-26.doi: 10.1016/S1062-2888(65)80006-5.


    M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344.doi: 10.1137/060661788.


    M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations, 246 (2009), 2103-2130.doi: 10.1016/j.jde.2008.06.037.


    M. Taniguchi, Traveling fronts in perturbed multistable reaction-diffusion equations, Discrete Contin. Dyn. Syst. - Supplement 2011 (The proceedings for the 8th AIMS International Conference on Dynamical Systems, Differential Equations and Applications), (to appear).


    J. J. Tyson and P. C. Fife, Target patterns in a realistic model of the Belousov-Zhabotinskii reaction, J. Chem. Phys., 73 (1980), 2224-2237.doi: 10.1063/1.440418.


    J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation I, Comm. Par. Diff. Eq., 17 (1992), 1889-1899.


    H. Yagisita, Nearly spherically symmetric expanding fronts in a bistable reaction-diffusion equation, J. Dynam. Differential Equations, 13 (2001), 323-353.doi: 10.1023/A:1016632124792.

  • 加载中

Article Metrics

HTML views() PDF downloads(173) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint