March  2012, 32(3): 1011-1046. doi: 10.3934/dcds.2012.32.1011

Multi-dimensional traveling fronts in bistable reaction-diffusion equations

1. 

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, O-okayama 2-12-1-W8-38, Tokyo 152-8552, Japan

Received  October 2010 Revised  September 2011 Published  October 2011

This paper studies traveling front solutions of convex polyhedral shapes in bistable reaction-diffusion equations including the Allen-Cahn equations or the Nagumo equations. By taking the limits of such solutions as the lateral faces go to infinity, we construct a three-dimensional traveling front solution for any given $g\in C^{\infty}(S^{1})$ with $\min_{0\leq \theta\leq 2\pi}g(\theta)=0$.
Citation: Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011
References:
[1]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta. Metall., 27 (1979), 1084.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics,, Partial Differential Equations and Related Topics, 446 (1975), 5.   Google Scholar

[3]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[4]

H. Berestycki, P. L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $R^N$,, Indiana Univ. Math. J. \textbf{30} (1981), 30 (1981), 141.  doi: 10.1512/iumj.1981.30.30012.  Google Scholar

[5]

J. Buckmaster, Polyhedral flames--an exercise in bimodal bifurcation analysis,, SIAM J. Appl. Math., 44 (1984), 40.  doi: 10.1137/0144005.  Google Scholar

[6]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations,, Adv. Differential Equations, 2 (1997), 125.   Google Scholar

[7]

X. Chen, J-S. Guo, F. Hamel, H. Ninomiya and J-M. Roquejoffre, Traveling waves with paraboloid like interfaces for balanced bistable dynamics,, Ann. I. H. Poincaré, AN 24 (2007), 369.   Google Scholar

[8]

M. del Pino, M. Kowalczyk and J. Wei, On de Giorgi conjecture in dimension $N\geq9$,, Annals of Math. (to appear)., ().   Google Scholar

[9]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions,, Arch. Rat. Mech. Anal., 65 (1977), 335.  doi: 10.1007/BF00250432.  Google Scholar

[10]

R. A. Fisher, The advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,'', Springer-Verlag, (1983).   Google Scholar

[12]

F. Hamel, R. Monneau and J.-M. Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions,, Ann. Scient. Ec. Norm. Sup. 4ème série, t.37 (2004), 469.   Google Scholar

[13]

F. Hamel, R. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts,, Discrete Contin. Dyn. Syst., 13 (2005), 1069.  doi: 10.3934/dcds.2005.13.1069.  Google Scholar

[14]

F. Hamel, R. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets,, Discrete Contin. Dyn. Syst., 14 (2006), 75.   Google Scholar

[15]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $\mathbbR^N$,, Arch. Rat. Mech. Anal., 157 (2001), 91.  doi: 10.1007/PL00004238.  Google Scholar

[16]

F. Hamel and J.-M. Roquejoffre, Heteroclinic connections for multidimensional bistable reaction-diffusion equations,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 101.  doi: 10.3934/dcdss.2011.4.101.  Google Scholar

[17]

M. Haragus and A. Scheel, Corner defects in almost planar interface propagation,, Ann. I. H. Poincaré, AN 23 (2006), 283.   Google Scholar

[18]

Y. I. Kanel', Certain problems on equations in the theory of burning,, Soviet. Math. Dokl., 2 (1961), 48.   Google Scholar

[19]

Y. I. Kanel', Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory,, Mat. Sb. (N.S.), 59 (1962), 245.   Google Scholar

[20]

T. Kapitula, Multidimensional stability of planar travelling waves,, Trans. Amer. Math. Soc., 349 (1997), 257.  doi: 10.1090/S0002-9947-97-01668-1.  Google Scholar

[21]

K. Kawasaki and T. Ohta, Kink dynamics in one-dimensional nonlinear systems,, Phys. A, 116 (1982), 573.  doi: 10.1016/0378-4371(82)90178-9.  Google Scholar

[22]

Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal traveling fronts in the Allen-Cahn equations,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1031.  doi: 10.1017/S0308210510001253.  Google Scholar

[23]

C. D. Levermore and J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation II,, Comm. Par. Diff. Eq., 17 (1992), 1901.   Google Scholar

[24]

H. Matano, M. Nara and M. Taniguchi, Stability of planar waves in the Allen-Cahn equation,, Comm. Par. Diff. Eq., 34 (2009), 976.   Google Scholar

[25]

J. Nagumo, S. Yoshizawa and S. Arimoto, Bistable transmission lines,, IEEE Trans. Circuit Theory, CT-12 (1965), 400.   Google Scholar

[26]

H. Ninomiya and M. Taniguchi, Traveling curved fronts of a mean curvature flow with constant driving force,, Free boundary problems: Theory and applications I, 13 (2000), 206.   Google Scholar

[27]

H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations,, J. Differential Equations, 213 (2005), 204.  doi: 10.1016/j.jde.2004.06.011.  Google Scholar

[28]

H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations,, Discrete Contin. Dyn. Syst., 15 (2006), 819.  doi: 10.3934/dcds.2006.15.819.  Google Scholar

[29]

L. A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in $\mathbfR^n$,, Arch. Rational Mech. Anal., 81 (1983), 181.  doi: 10.1007/BF00250651.  Google Scholar

[30]

V. Pérez-Muñuzuri, M. Gómez-Gesteira, A. P. Muñuzuri, V. A. Davydov and V. Pérez-Villar, V-shaped stable nonspiral patterns,, Physical Review E, 51 (1995), 845.   Google Scholar

[31]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,'', Springer-Verlag, (1984).   Google Scholar

[32]

J-M. Roquejoffre and V. Roussier-Michon, Nontrivial large-time behaviour in bistable reaction-diffusion equations,, Annali di Matematica, 188 (2009), 207.   Google Scholar

[33]

D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems,, Indiana Univ. Math. J., 21 (1972), 979.  doi: 10.1512/iumj.1972.21.21079.  Google Scholar

[34]

N. Shigesada, K. Kawasaki and E. Teramoto, Traveling periodic waves in heterogeneous environments,, Theoret. Population Biol., 30 (1986), 143.  doi: 10.1016/0040-5809(86)90029-8.  Google Scholar

[35]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.   Google Scholar

[36]

F. A. Smith and S. F. Pickering, Bunsen flames of unusual structure,, Proceedings of the Symposium on Combustion, Vol. 1-2 (1948), 1.  doi: 10.1016/S1062-2888(65)80006-5.  Google Scholar

[37]

M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations,, SIAM J. Math. Anal., 39 (2007), 319.  doi: 10.1137/060661788.  Google Scholar

[38]

M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations,, J. Differential Equations, 246 (2009), 2103.  doi: 10.1016/j.jde.2008.06.037.  Google Scholar

[39]

M. Taniguchi, Traveling fronts in perturbed multistable reaction-diffusion equations,, Discrete Contin. Dyn. Syst. - Supplement 2011 (The proceedings for the 8th AIMS International Conference on Dynamical Systems, (2011).   Google Scholar

[40]

J. J. Tyson and P. C. Fife, Target patterns in a realistic model of the Belousov-Zhabotinskii reaction,, J. Chem. Phys., 73 (1980), 2224.  doi: 10.1063/1.440418.  Google Scholar

[41]

J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation I,, Comm. Par. Diff. Eq., 17 (1992), 1889.   Google Scholar

[42]

H. Yagisita, Nearly spherically symmetric expanding fronts in a bistable reaction-diffusion equation,, J. Dynam. Differential Equations, 13 (2001), 323.  doi: 10.1023/A:1016632124792.  Google Scholar

show all references

References:
[1]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta. Metall., 27 (1979), 1084.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics,, Partial Differential Equations and Related Topics, 446 (1975), 5.   Google Scholar

[3]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[4]

H. Berestycki, P. L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $R^N$,, Indiana Univ. Math. J. \textbf{30} (1981), 30 (1981), 141.  doi: 10.1512/iumj.1981.30.30012.  Google Scholar

[5]

J. Buckmaster, Polyhedral flames--an exercise in bimodal bifurcation analysis,, SIAM J. Appl. Math., 44 (1984), 40.  doi: 10.1137/0144005.  Google Scholar

[6]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations,, Adv. Differential Equations, 2 (1997), 125.   Google Scholar

[7]

X. Chen, J-S. Guo, F. Hamel, H. Ninomiya and J-M. Roquejoffre, Traveling waves with paraboloid like interfaces for balanced bistable dynamics,, Ann. I. H. Poincaré, AN 24 (2007), 369.   Google Scholar

[8]

M. del Pino, M. Kowalczyk and J. Wei, On de Giorgi conjecture in dimension $N\geq9$,, Annals of Math. (to appear)., ().   Google Scholar

[9]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions,, Arch. Rat. Mech. Anal., 65 (1977), 335.  doi: 10.1007/BF00250432.  Google Scholar

[10]

R. A. Fisher, The advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,'', Springer-Verlag, (1983).   Google Scholar

[12]

F. Hamel, R. Monneau and J.-M. Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions,, Ann. Scient. Ec. Norm. Sup. 4ème série, t.37 (2004), 469.   Google Scholar

[13]

F. Hamel, R. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts,, Discrete Contin. Dyn. Syst., 13 (2005), 1069.  doi: 10.3934/dcds.2005.13.1069.  Google Scholar

[14]

F. Hamel, R. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets,, Discrete Contin. Dyn. Syst., 14 (2006), 75.   Google Scholar

[15]

F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in $\mathbbR^N$,, Arch. Rat. Mech. Anal., 157 (2001), 91.  doi: 10.1007/PL00004238.  Google Scholar

[16]

F. Hamel and J.-M. Roquejoffre, Heteroclinic connections for multidimensional bistable reaction-diffusion equations,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 101.  doi: 10.3934/dcdss.2011.4.101.  Google Scholar

[17]

M. Haragus and A. Scheel, Corner defects in almost planar interface propagation,, Ann. I. H. Poincaré, AN 23 (2006), 283.   Google Scholar

[18]

Y. I. Kanel', Certain problems on equations in the theory of burning,, Soviet. Math. Dokl., 2 (1961), 48.   Google Scholar

[19]

Y. I. Kanel', Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory,, Mat. Sb. (N.S.), 59 (1962), 245.   Google Scholar

[20]

T. Kapitula, Multidimensional stability of planar travelling waves,, Trans. Amer. Math. Soc., 349 (1997), 257.  doi: 10.1090/S0002-9947-97-01668-1.  Google Scholar

[21]

K. Kawasaki and T. Ohta, Kink dynamics in one-dimensional nonlinear systems,, Phys. A, 116 (1982), 573.  doi: 10.1016/0378-4371(82)90178-9.  Google Scholar

[22]

Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal traveling fronts in the Allen-Cahn equations,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1031.  doi: 10.1017/S0308210510001253.  Google Scholar

[23]

C. D. Levermore and J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation II,, Comm. Par. Diff. Eq., 17 (1992), 1901.   Google Scholar

[24]

H. Matano, M. Nara and M. Taniguchi, Stability of planar waves in the Allen-Cahn equation,, Comm. Par. Diff. Eq., 34 (2009), 976.   Google Scholar

[25]

J. Nagumo, S. Yoshizawa and S. Arimoto, Bistable transmission lines,, IEEE Trans. Circuit Theory, CT-12 (1965), 400.   Google Scholar

[26]

H. Ninomiya and M. Taniguchi, Traveling curved fronts of a mean curvature flow with constant driving force,, Free boundary problems: Theory and applications I, 13 (2000), 206.   Google Scholar

[27]

H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations,, J. Differential Equations, 213 (2005), 204.  doi: 10.1016/j.jde.2004.06.011.  Google Scholar

[28]

H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations,, Discrete Contin. Dyn. Syst., 15 (2006), 819.  doi: 10.3934/dcds.2006.15.819.  Google Scholar

[29]

L. A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in $\mathbfR^n$,, Arch. Rational Mech. Anal., 81 (1983), 181.  doi: 10.1007/BF00250651.  Google Scholar

[30]

V. Pérez-Muñuzuri, M. Gómez-Gesteira, A. P. Muñuzuri, V. A. Davydov and V. Pérez-Villar, V-shaped stable nonspiral patterns,, Physical Review E, 51 (1995), 845.   Google Scholar

[31]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,'', Springer-Verlag, (1984).   Google Scholar

[32]

J-M. Roquejoffre and V. Roussier-Michon, Nontrivial large-time behaviour in bistable reaction-diffusion equations,, Annali di Matematica, 188 (2009), 207.   Google Scholar

[33]

D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems,, Indiana Univ. Math. J., 21 (1972), 979.  doi: 10.1512/iumj.1972.21.21079.  Google Scholar

[34]

N. Shigesada, K. Kawasaki and E. Teramoto, Traveling periodic waves in heterogeneous environments,, Theoret. Population Biol., 30 (1986), 143.  doi: 10.1016/0040-5809(86)90029-8.  Google Scholar

[35]

J. G. Skellam, Random dispersal in theoretical populations,, Biometrika, 38 (1951), 196.   Google Scholar

[36]

F. A. Smith and S. F. Pickering, Bunsen flames of unusual structure,, Proceedings of the Symposium on Combustion, Vol. 1-2 (1948), 1.  doi: 10.1016/S1062-2888(65)80006-5.  Google Scholar

[37]

M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations,, SIAM J. Math. Anal., 39 (2007), 319.  doi: 10.1137/060661788.  Google Scholar

[38]

M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations,, J. Differential Equations, 246 (2009), 2103.  doi: 10.1016/j.jde.2008.06.037.  Google Scholar

[39]

M. Taniguchi, Traveling fronts in perturbed multistable reaction-diffusion equations,, Discrete Contin. Dyn. Syst. - Supplement 2011 (The proceedings for the 8th AIMS International Conference on Dynamical Systems, (2011).   Google Scholar

[40]

J. J. Tyson and P. C. Fife, Target patterns in a realistic model of the Belousov-Zhabotinskii reaction,, J. Chem. Phys., 73 (1980), 2224.  doi: 10.1063/1.440418.  Google Scholar

[41]

J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation I,, Comm. Par. Diff. Eq., 17 (1992), 1889.   Google Scholar

[42]

H. Yagisita, Nearly spherically symmetric expanding fronts in a bistable reaction-diffusion equation,, J. Dynam. Differential Equations, 13 (2001), 323.  doi: 10.1023/A:1016632124792.  Google Scholar

[1]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[5]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[6]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[7]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[8]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[9]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[10]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[13]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[14]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[15]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[16]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[17]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[18]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[19]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[20]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (29)

Other articles
by authors

[Back to Top]