Citation: |
[1] |
J. A. D. Appleby and A. Freeman, Exponential asymptotic stability of linear Itô-Volterra equations with damped stochastic perturbations, Electron. J. Probab., 8 (2003), 22 pp. |
[2] |
L. Arnold, "Stochastic Differential Equations: Theory and Applications,'' Wiley, New York, 1972. |
[3] |
H. Bao and J. Cao, Existence and uniqueness of solutions to neutral stochastic functional differential equations with infinite delay, Appl. Math. Comput., 215 (2009), 1732-1743doi: 10.1016/j.amc.2009.07.025. |
[4] |
H. Bereketoglu and I. Győri, Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay, J. Math. Anal. Appl., 210 (1997), 279-291.doi: 10.1006/jmaa.1997.5403. |
[5] |
A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences,'' SIAM, Philadelphia, PA, 1994. |
[6] |
T. Caraballo, M. J. Garrido-Atienza and J. Real, Stochastic stabilization of differential systems with general decay rate, System Control Lett., 48 (2003), 397-406.doi: 10.1016/S0167-6911(02)00293-1. |
[7] |
F. Deng, Q. Luo, X. Mao and S. Pang, Noise suppresses or expresses exponential growth, System Control Lett., 57 (2008), 262-270.doi: 10.1016/j.sysconle.2007.09.002. |
[8] |
S. Fang and T. Zhang, A study of a class of stochastic differential equations with non-Lipschitzian coefficients, Probab. Theory Related Fields, 132 (2005), 356-390.doi: 10.1007/s00440-004-0398-z. |
[9] |
A. Friedman, "Stochastic Differential Equations and their Applications,'' Vol. 2, Academic Press, New York, 1976. |
[10] |
K. Gopalsamy, "Stability and Oscillation in Delay Differential Equations of Population Dynamics,'' Kluwer Academic, Dordrecht, 1992. |
[11] |
J. K. Hale and S. M. V. Lunel, "Introduction to Functional Differential Equations,'' Springer, Berlin, 1993. |
[12] |
X. He, The Lyapunov functionals for delay Lotka-Volterra-type models, SIAM J. Appl. Math., 58 (1998), 1222-1236.doi: 10.1137/S0036139995295116. |
[13] |
Y. Hu, F. Wu and C. Huang, Robustness of exponential stability of a class of stochastic functional differential equations with infinite delay, Automatica, 45 (2009), 2577-2584.doi: 10.1016/j.automatica.2009.07.007. |
[14] |
O. Kallenberg, "Foundations of Modern Probability,'' Springer-Verlag, New York, 1997. |
[15] |
R. Z. Khasminskii, "Stochastic Stability of Differential Equations,'' Sijthoff and Noordhoff, Alphen a/d Rijn, 1981. |
[16] |
V. B. Kolmanovskii and V. R. Nosov, "Stability of Functional Differential Equations,'' Academic Press, New York, 1986. |
[17] |
Y. Kuang and H. L. Smith, Global stability for infinite delay Lotka-Volterra type systems, J. Differential Equations, 103 (1993), 221-246.doi: 10.1006/jdeq.1993.1048. |
[18] |
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,'' Academic press, Boston, 1993. |
[19] |
J. P. LaSalle, "Stability Theory of Ordinary Differential Equations,'' J. Differential Equations, 4 (1968), 57-65.doi: 10.1016/0022-0396(68)90048-X. |
[20] |
R. Sh. Liptser and A. N. Shiryaev, "Theory of Martingale,'' Kluwer Academic Publishers, Dordrecht, 1989.doi: 10.1007/978-94-009-2438-3. |
[21] |
Y. Liu, X. Meng and F. Wu, Some stability criteria of stochastic functional differential equations with infinite delay, J. Appl. Math. Stoch. Anal., 2010.doi: 10.1155/2010/875908. |
[22] |
X. Mao, "Stability of Stochastic Differential Equations with Respect to Semimartingale,'' Wiley, New York, 1991. |
[23] |
X. Mao, Almost sure polynomial stability for a class of stochastic differential equations, Quart. J. Math. Oxford. Ser. (2), 43 (1992), 339-348. |
[24] |
X. Mao, "Exponential Stability of Stochastic Differential Equations,'' Dekker, New York, 1994. |
[25] |
X. Mao, Exponential stability in mean square of neutral stochastic differential-functional equations, System Control Lett., 26 (1995), 245-251.doi: 10.1016/0167-6911(95)00018-5. |
[26] |
X. Mao, Razumikhin-type theorems on exponential stability of neutral stochastic functional-differential equations, SIAM J. Math. Anal., 28 (1997), 389-401.doi: 10.1137/S0036141095290835. |
[27] |
X. Mao, "Stochastic Differential Equations and Applications,'' Horwood, Chichester, 1997. |
[28] |
X. Mao, Stochastic versions of the LaSalle theorem, J. Differential Equations, 153 (1999), 175-195.doi: 10.1006/jdeq.1998.3552. |
[29] |
X. Mao, The LaSalle-type theorems for stochastic functional differential equations, Nonlinear Stud., 7 (2000), 307-328. |
[30] |
X. Mao, Attraction, stability and boundedness for stochastic differential delay equations, Nonlinear Anal., 47 (2001), 4795-4806.doi: 10.1016/S0362-546X(01)00591-0. |
[31] |
X. Mao, Some contributions to stochastic asymptotic stability and boundedness via multiple Lyapunov functions, J. Math. Anal. Appl., 260 (2001), 325-340.doi: 10.1006/jmaa.2001.7451. |
[32] |
X. Mao, A note on the LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 268 (2002), 125-142.doi: 10.1006/jmaa.2001.7803. |
[33] |
X. Mao and M. J. Rassias, Khasminskii-type theorems for stochastic differential delay equations, Stoch. Anal. Appl., 23 (2005), 1045-1069.doi: 10.1080/07362990500118637. |
[34] |
X. Mao and M. Riedle, Mean square stability of stochastic Volterra integro-differential equations, System Control Lett., 55 (2006), 459-465.doi: 10.1016/j.sysconle.2005.09.009. |
[35] |
S.-E. A. Mohammed, "Stochastic Functional Differential Equations,'' Longman, Harlow/New York, 1986. |
[36] |
Y. Shen, Q. Luo and X. Mao, The improved LaSalle-type theorems for stochastic functional differential equations, J. Math. Anal. Appl., 318 (2006), 134-154.doi: 10.1016/j.jmaa.2005.05.026. |
[37] |
J. Randjelović and S. Janković, On the $p$th moment exponential stability criteria of neutral stochastic functional differential equations, J. Math. Anal. Appl., 326 (2007), 266-280. |
[38] |
Y. Ren and N. Xia, Remarks on the existence and uniqueness of the solutions to stochastic functional differential equations with infinite delay, J. Comput. Appl. Math., 220 (2008), 364-372.doi: 10.1016/j.cam.2007.08.022. |
[39] |
F. Wei and K. Wang, The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay, J. Math. Anal. Appl., 331 (2007), 516-531.doi: 10.1016/j.jmaa.2006.09.020. |
[40] |
F. Wu and Y. Xu, Stochastic Lotka-Volterra population dynamics with infinite delay, SIAM J. Appl. Math., 70 (2009), 641-657.doi: 10.1137/080719194. |
[41] |
F. Wu and Y. Hu, Stochastic Lotka-Volterra system with unbounded distributed delay, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 275-288.doi: 10.3934/dcdsb.2010.14.275. |
[42] |
F. Wu, S. Hu and C. Huang, Robustness of general decay stability of nonlinear neutral stochastic functional differential equations with infinite delay, System Control Lett., 59 (2010), 195-202.doi: 10.1016/j.sysconle.2010.01.004. |
[43] |
S. Zhou, Z. Wang and D. Feng, Stochastic functional differential equations with infinite delay, J. Math. Anal. Appl., 357 (2009), 416-426.doi: 10.1016/j.jmaa.2009.04.015. |