\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A convex-concave elliptic problem with a parameter on the boundary condition

Abstract / Introduction Related Papers Cited by
  • In this paper we study existence and multiplicity of nonnegative solutions to $$ \begin{equation} \left\{\begin{array}{ll} \Delta u = u^p + u^q \qquad & \mbox{in }\Omega, \\ \frac{\partial u }{\partial \nu} =\lambda u \qquad & \mbox{on }\partial \Omega. \end{array}\right. \end{equation} $$ Here $\Omega$ is a smooth bounded domain of $\mathbb{R}^N$, $\nu$ stands for the outward unit normal and $p$, $q$ are in the convex-concave case, that is $0 < q < 1 < p$. We prove that there exists $\Lambda^* >0$ such that there are no nonnegative solutions for $\lambda < \Lambda^*$, and there is a maximal nonnegative solution for $\lambda \ge \Lambda^{*}$. If $\lambda$ is large enough, then there exist at least two nonnegative solutions. We also study the asymptotic behavior of solutions when $\lambda\to \infty$ and the occurrence of dead cores. In the particular case where $\Omega$ is the unit ball of $\mathbb{R}^N$ we show exact multiplicity of radial nonnegative solutions when $\lambda$ is large enough, and also the existence of nonradial nonnegative solutions.
    Mathematics Subject Classification: Primary: 35J25, 35J61; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.doi: 10.1006/jfan.1994.1078.

    [2]

    A. Ambrosetti, J. García-Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal., 137 (1996), 219-242.doi: 10.1006/jfan.1996.0045.

    [3]

    A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.doi: 10.1016/0022-1236(73)90051-7.

    [4]

    D. Arcoya and J. D. Rossi, Antimaximum principle for quasilinear problems, Adv. Diff. Eqns., 9 (2004), 1185-1200.

    [5]

    J. M. Arrieta, R. Pardo and A. Rodríguez-Bernal, Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 225-252.

    [6]

    J. M. Arrieta, R. Pardo and A. Rodríguez-Bernal, Equilibria and global dynamics of a problem with bifurcation from infinity, J. Diff. Eqns., 246 (2009), 2055-2080.doi: 10.1016/j.jde.2008.09.002.

    [7]

    C. Bandle and M. Marcus, "Large" solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behaviour, J. Anal. Math., 58 (1992), 9-24.doi: 10.1007/BF02790355.

    [8]

    F. Charro, E. Colorado and I. Peral, Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave-convex right-hand side, J. Diff. Eqns., 246 (2009), 4221-4248.doi: 10.1016/j.jde.2009.01.013.

    [9]

    E. Colorado and I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions, J. Funct. Anal., 199 (2003), 468-507.doi: 10.1016/S0022-1236(02)00101-5.

    [10]

    M. Del Pino and C. Flores, Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains, Comm. Partial Differential Equations, 26 (2001), 2189-2210.

    [11]

    J. García Azorero and I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323 (1991), 877-895.doi: 10.2307/2001562.

    [12]

    J. García Azorero and I. Peral Alonso, Some results about existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J., 43 (1994), 941-957.doi: 10.1512/iumj.1994.43.43041.

    [13]

    J. García Azorero, I. Peral and J. D. Rossi, A convex-concave problem with a nonlinear boundary condition, J. Diff. Eqns., 198 (2004), 91-128.

    [14]

    J. García-Melián, Uniqueness of positive solutions for a boundary blow-up problem, J. Math. Anal. Appl., 360 (2009), 530-536.doi: 10.1016/j.jmaa.2009.06.077.

    [15]

    J. García-Melián, J. D. Rossi and J. Sabina de Lis, A bifurcation problem governed by the boundary condition. I, NoDEA Nonlinear Differential Equations and Applications, 14 (2007), 499-525.

    [16]

    J. García-Melián, J. D. Rossi and J. Sabina de Lis, A bifurcation problem governed by the boundary condition. II, Proc. London Math. Soc. (3), 94 (2007), 1-25.

    [17]

    J. García-Melián, J. D. Rossi and J. Sabina de Lis, Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions, Comm. Contemp. Math., 11 (2009), 585-613.doi: 10.1142/S0219199709003508.

    [18]

    J. García-Melián, J. D. Rossi and J. Sabina de Lis, An elliptic system with bifurcation parameters on the boundary condition, J. Diff. Eqns., 247 (2009), 779-810.

    [19]

    J. García-Melián, J. D. Rossi and J. Sabina de Lis, Layer profiles of solutions to elliptic problems under parameter-dependent boundary conditions, Zeitschrift für Analysis und ihre Anwendungen (Journal for Analysis and its Applications), 29 (2010), 451-467.

    [20]

    J. García-Melián and J. Sabina de Lis, Uniqueness to quasilinear problems for the p-Laplacian in radially symmetric domains, Nonlinear Anal. Ser. A: Theory Methods, 43 (2001), 803-835.

    [21]

    J. García-Melián and J. Sabina de Lis, Remarks on large solutions, in "Spectral Theory and Nonlinear Analysis with Applications to Spatial Ecology'' (eds. S. Cano, J. López-Gómez and C. Mora), 31-57, World Scientific, Hackensack, NJ, 2005.

    [22]

    N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 321-330.

    [23]

    P. Hartman, "Ordinary Differential Equations," John Wiley & Sons, Inc., New York-London-Sydney, 1964.

    [24]

    J. B. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math., 10 (1957), 503-510.doi: 10.1002/cpa.3160100402.

    [25]

    P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," CBMS Regional Conf. Ser. in Math., 65, Amer. Math. Soc., Providence, R.I., 1986.

    [26]

    W. Reichel and W. Walter, Radial solutions of equations and inequalities involving the $p$-Laplacian, J. Inequal. Appl., 1 (1997), 47-71.doi: 10.1155/S1025583497000040.

    [27]

    J. D. Rossi, Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem, in "Stationary Partial Differential Equations," Vol. II, 311-406, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2005.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(76) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return