April  2012, 32(4): 1095-1124. doi: 10.3934/dcds.2012.32.1095

A convex-concave elliptic problem with a parameter on the boundary condition

1. 

Dpto. de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271 - La Laguna

2. 

Departamento de Análisis Matemático, Universidad de Alicante, Ap. correos 99, 03080 Alicante, Spain

3. 

Departamento de Análisis Matemático, Universidad de La Laguna, C/. Astrofísico Francisco Sánchez s/n, 38271 – La Laguna, Spain

Received  September 2010 Revised  July 2011 Published  October 2011

In this paper we study existence and multiplicity of nonnegative solutions to $$ \begin{equation} \left\{\begin{array}{ll} \Delta u = u^p + u^q \qquad & \mbox{in }\Omega, \\ \frac{\partial u }{\partial \nu} =\lambda u \qquad & \mbox{on }\partial \Omega. \end{array}\right. \end{equation} $$ Here $\Omega$ is a smooth bounded domain of $\mathbb{R}^N$, $\nu$ stands for the outward unit normal and $p$, $q$ are in the convex-concave case, that is $0 < q < 1 < p$. We prove that there exists $\Lambda^* >0$ such that there are no nonnegative solutions for $\lambda < \Lambda^*$, and there is a maximal nonnegative solution for $\lambda \ge \Lambda^{*}$. If $\lambda$ is large enough, then there exist at least two nonnegative solutions. We also study the asymptotic behavior of solutions when $\lambda\to \infty$ and the occurrence of dead cores. In the particular case where $\Omega$ is the unit ball of $\mathbb{R}^N$ we show exact multiplicity of radial nonnegative solutions when $\lambda$ is large enough, and also the existence of nonradial nonnegative solutions.
Citation: J. García-Melián, Julio D. Rossi, José Sabina de Lis. A convex-concave elliptic problem with a parameter on the boundary condition. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1095-1124. doi: 10.3934/dcds.2012.32.1095
References:
[1]

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems,, J. Funct. Anal., 122 (1994), 519.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[2]

A. Ambrosetti, J. García-Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations,, J. Funct. Anal., 137 (1996), 219.  doi: 10.1006/jfan.1996.0045.  Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[4]

D. Arcoya and J. D. Rossi, Antimaximum principle for quasilinear problems,, Adv. Diff. Eqns., 9 (2004), 1185.   Google Scholar

[5]

J. M. Arrieta, R. Pardo and A. Rodríguez-Bernal, Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 225.   Google Scholar

[6]

J. M. Arrieta, R. Pardo and A. Rodríguez-Bernal, Equilibria and global dynamics of a problem with bifurcation from infinity,, J. Diff. Eqns., 246 (2009), 2055.  doi: 10.1016/j.jde.2008.09.002.  Google Scholar

[7]

C. Bandle and M. Marcus, "Large" solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behaviour,, J. Anal. Math., 58 (1992), 9.  doi: 10.1007/BF02790355.  Google Scholar

[8]

F. Charro, E. Colorado and I. Peral, Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave-convex right-hand side,, J. Diff. Eqns., 246 (2009), 4221.  doi: 10.1016/j.jde.2009.01.013.  Google Scholar

[9]

E. Colorado and I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions,, J. Funct. Anal., 199 (2003), 468.  doi: 10.1016/S0022-1236(02)00101-5.  Google Scholar

[10]

M. Del Pino and C. Flores, Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains,, Comm. Partial Differential Equations, 26 (2001), 2189.   Google Scholar

[11]

J. García Azorero and I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term,, Trans. Amer. Math. Soc., 323 (1991), 877.  doi: 10.2307/2001562.  Google Scholar

[12]

J. García Azorero and I. Peral Alonso, Some results about existence of a second positive solution in a quasilinear critical problem,, Indiana Univ. Math. J., 43 (1994), 941.  doi: 10.1512/iumj.1994.43.43041.  Google Scholar

[13]

J. García Azorero, I. Peral and J. D. Rossi, A convex-concave problem with a nonlinear boundary condition,, J. Diff. Eqns., 198 (2004), 91.   Google Scholar

[14]

J. García-Melián, Uniqueness of positive solutions for a boundary blow-up problem,, J. Math. Anal. Appl., 360 (2009), 530.  doi: 10.1016/j.jmaa.2009.06.077.  Google Scholar

[15]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, A bifurcation problem governed by the boundary condition. I,, NoDEA Nonlinear Differential Equations and Applications, 14 (2007), 499.   Google Scholar

[16]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, A bifurcation problem governed by the boundary condition. II,, Proc. London Math. Soc. (3), 94 (2007), 1.   Google Scholar

[17]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions,, Comm. Contemp. Math., 11 (2009), 585.  doi: 10.1142/S0219199709003508.  Google Scholar

[18]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, An elliptic system with bifurcation parameters on the boundary condition,, J. Diff. Eqns., 247 (2009), 779.   Google Scholar

[19]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, Layer profiles of solutions to elliptic problems under parameter-dependent boundary conditions,, Zeitschrift für Analysis und ihre Anwendungen (Journal for Analysis and its Applications), 29 (2010), 451.   Google Scholar

[20]

J. García-Melián and J. Sabina de Lis, Uniqueness to quasilinear problems for the p-Laplacian in radially symmetric domains,, Nonlinear Anal. Ser. A: Theory Methods, 43 (2001), 803.   Google Scholar

[21]

J. García-Melián and J. Sabina de Lis, Remarks on large solutions,, in, (2005), 31.   Google Scholar

[22]

N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 321.   Google Scholar

[23]

P. Hartman, "Ordinary Differential Equations,", John Wiley & Sons, (1964).   Google Scholar

[24]

J. B. Keller, On solutions of $\Delta u=f(u)$,, Comm. Pure Appl. Math., 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar

[25]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conf. Ser. in Math., 65 (1986).   Google Scholar

[26]

W. Reichel and W. Walter, Radial solutions of equations and inequalities involving the $p$-Laplacian,, J. Inequal. Appl., 1 (1997), 47.  doi: 10.1155/S1025583497000040.  Google Scholar

[27]

J. D. Rossi, Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem,, in, (2005), 311.   Google Scholar

show all references

References:
[1]

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems,, J. Funct. Anal., 122 (1994), 519.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[2]

A. Ambrosetti, J. García-Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations,, J. Funct. Anal., 137 (1996), 219.  doi: 10.1006/jfan.1996.0045.  Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[4]

D. Arcoya and J. D. Rossi, Antimaximum principle for quasilinear problems,, Adv. Diff. Eqns., 9 (2004), 1185.   Google Scholar

[5]

J. M. Arrieta, R. Pardo and A. Rodríguez-Bernal, Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 225.   Google Scholar

[6]

J. M. Arrieta, R. Pardo and A. Rodríguez-Bernal, Equilibria and global dynamics of a problem with bifurcation from infinity,, J. Diff. Eqns., 246 (2009), 2055.  doi: 10.1016/j.jde.2008.09.002.  Google Scholar

[7]

C. Bandle and M. Marcus, "Large" solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behaviour,, J. Anal. Math., 58 (1992), 9.  doi: 10.1007/BF02790355.  Google Scholar

[8]

F. Charro, E. Colorado and I. Peral, Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave-convex right-hand side,, J. Diff. Eqns., 246 (2009), 4221.  doi: 10.1016/j.jde.2009.01.013.  Google Scholar

[9]

E. Colorado and I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions,, J. Funct. Anal., 199 (2003), 468.  doi: 10.1016/S0022-1236(02)00101-5.  Google Scholar

[10]

M. Del Pino and C. Flores, Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains,, Comm. Partial Differential Equations, 26 (2001), 2189.   Google Scholar

[11]

J. García Azorero and I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term,, Trans. Amer. Math. Soc., 323 (1991), 877.  doi: 10.2307/2001562.  Google Scholar

[12]

J. García Azorero and I. Peral Alonso, Some results about existence of a second positive solution in a quasilinear critical problem,, Indiana Univ. Math. J., 43 (1994), 941.  doi: 10.1512/iumj.1994.43.43041.  Google Scholar

[13]

J. García Azorero, I. Peral and J. D. Rossi, A convex-concave problem with a nonlinear boundary condition,, J. Diff. Eqns., 198 (2004), 91.   Google Scholar

[14]

J. García-Melián, Uniqueness of positive solutions for a boundary blow-up problem,, J. Math. Anal. Appl., 360 (2009), 530.  doi: 10.1016/j.jmaa.2009.06.077.  Google Scholar

[15]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, A bifurcation problem governed by the boundary condition. I,, NoDEA Nonlinear Differential Equations and Applications, 14 (2007), 499.   Google Scholar

[16]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, A bifurcation problem governed by the boundary condition. II,, Proc. London Math. Soc. (3), 94 (2007), 1.   Google Scholar

[17]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions,, Comm. Contemp. Math., 11 (2009), 585.  doi: 10.1142/S0219199709003508.  Google Scholar

[18]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, An elliptic system with bifurcation parameters on the boundary condition,, J. Diff. Eqns., 247 (2009), 779.   Google Scholar

[19]

J. García-Melián, J. D. Rossi and J. Sabina de Lis, Layer profiles of solutions to elliptic problems under parameter-dependent boundary conditions,, Zeitschrift für Analysis und ihre Anwendungen (Journal for Analysis and its Applications), 29 (2010), 451.   Google Scholar

[20]

J. García-Melián and J. Sabina de Lis, Uniqueness to quasilinear problems for the p-Laplacian in radially symmetric domains,, Nonlinear Anal. Ser. A: Theory Methods, 43 (2001), 803.   Google Scholar

[21]

J. García-Melián and J. Sabina de Lis, Remarks on large solutions,, in, (2005), 31.   Google Scholar

[22]

N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 321.   Google Scholar

[23]

P. Hartman, "Ordinary Differential Equations,", John Wiley & Sons, (1964).   Google Scholar

[24]

J. B. Keller, On solutions of $\Delta u=f(u)$,, Comm. Pure Appl. Math., 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar

[25]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conf. Ser. in Math., 65 (1986).   Google Scholar

[26]

W. Reichel and W. Walter, Radial solutions of equations and inequalities involving the $p$-Laplacian,, J. Inequal. Appl., 1 (1997), 47.  doi: 10.1155/S1025583497000040.  Google Scholar

[27]

J. D. Rossi, Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem,, in, (2005), 311.   Google Scholar

[1]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[2]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[5]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[6]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[7]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[8]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[9]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[10]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[11]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[12]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[13]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[14]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[15]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[16]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[17]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[18]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[19]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[20]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (7)

[Back to Top]