-
Previous Article
Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control
- DCDS Home
- This Issue
-
Next Article
A convex-concave elliptic problem with a parameter on the boundary condition
Second order approximations of quasistatic evolution problems in finite dimension
1. | via Bonomea 265, 34136 Trieste, Italy |
References:
[1] |
F. Cagnetti, A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path,, Math. Models Methods Appl. Sci., 18 (2008), 1027.
doi: 10.1142/S0218202508002942. |
[2] |
G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening,, Arch. Ration. Mech. Anal., 189 (2008), 469.
doi: 10.1007/s00205-008-0117-5. |
[3] |
G. Dal Maso, A. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling,, Calc. Var. Partial Differential Equations, 40 (2011), 125. Google Scholar |
[4] |
G. Dal Maso, A. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution,, SISSA preprint 46/2010/M., (). Google Scholar |
[5] |
G. Dal Maso and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: the spatially homogeneous case,, Netw. Heterog. Media, 5 (2010), 97.
|
[6] |
M. A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity,, J. Convex Anal., 13 (2006), 151.
|
[7] |
J. Guckenheimer and P. Holme, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations on Vector Fields,", Applied Mathematical Sciences, 42 (1983).
|
[8] |
J. K. Hale, "Ordinary Differential Equations,", Pure and Applied Mathematics, XX1 (1980). Google Scholar |
[9] |
M. W. Hirsch, "Differential Topology,", Graduate Texts in Mathematics, 33 (1976). Google Scholar |
[10] |
D. Knees, A. Mielke and C. Zanini, Crack growth in polyconvex materials,, Phys. D, 239 (2010), 1470.
doi: 10.1016/j.physd.2009.02.008. |
[11] |
A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces,, Discrete Contin. Dyn. Syst., 25 (2009), 585.
doi: 10.3934/dcds.2009.25.585. |
[12] |
A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems,, ESAIM Control Optim. Calc. Var., (2011).
doi: 10.1051/cocv/2010054. |
[13] |
F. Solombrino, Quasistatic evolution for plasticity with softening: the spatially homogeneous case,, Discrete Contin. Dyn. Syst., 27 (2010), 1189.
doi: 10.3934/dcds.2010.27.1189. |
[14] |
R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth,, Boll. Unione Mat. Ital. (9), 2 (2009), 1.
|
[15] |
C. Zanini, Singular perturbation of finite dimensional gradient flows,, Discrete Contin. Dyn. Syst., 18 (2007), 657.
doi: 10.3934/dcds.2007.18.657. |
show all references
References:
[1] |
F. Cagnetti, A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path,, Math. Models Methods Appl. Sci., 18 (2008), 1027.
doi: 10.1142/S0218202508002942. |
[2] |
G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening,, Arch. Ration. Mech. Anal., 189 (2008), 469.
doi: 10.1007/s00205-008-0117-5. |
[3] |
G. Dal Maso, A. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling,, Calc. Var. Partial Differential Equations, 40 (2011), 125. Google Scholar |
[4] |
G. Dal Maso, A. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution,, SISSA preprint 46/2010/M., (). Google Scholar |
[5] |
G. Dal Maso and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: the spatially homogeneous case,, Netw. Heterog. Media, 5 (2010), 97.
|
[6] |
M. A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity,, J. Convex Anal., 13 (2006), 151.
|
[7] |
J. Guckenheimer and P. Holme, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations on Vector Fields,", Applied Mathematical Sciences, 42 (1983).
|
[8] |
J. K. Hale, "Ordinary Differential Equations,", Pure and Applied Mathematics, XX1 (1980). Google Scholar |
[9] |
M. W. Hirsch, "Differential Topology,", Graduate Texts in Mathematics, 33 (1976). Google Scholar |
[10] |
D. Knees, A. Mielke and C. Zanini, Crack growth in polyconvex materials,, Phys. D, 239 (2010), 1470.
doi: 10.1016/j.physd.2009.02.008. |
[11] |
A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces,, Discrete Contin. Dyn. Syst., 25 (2009), 585.
doi: 10.3934/dcds.2009.25.585. |
[12] |
A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems,, ESAIM Control Optim. Calc. Var., (2011).
doi: 10.1051/cocv/2010054. |
[13] |
F. Solombrino, Quasistatic evolution for plasticity with softening: the spatially homogeneous case,, Discrete Contin. Dyn. Syst., 27 (2010), 1189.
doi: 10.3934/dcds.2010.27.1189. |
[14] |
R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth,, Boll. Unione Mat. Ital. (9), 2 (2009), 1.
|
[15] |
C. Zanini, Singular perturbation of finite dimensional gradient flows,, Discrete Contin. Dyn. Syst., 18 (2007), 657.
doi: 10.3934/dcds.2007.18.657. |
[1] |
Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279 |
[2] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[3] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[4] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294 |
[5] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020342 |
[6] |
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020379 |
[7] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[8] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[9] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
[10] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[11] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[12] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
[13] |
Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020381 |
[14] |
Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139 |
[15] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[16] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[17] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[18] |
Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133 |
[19] |
Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020392 |
[20] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]