• Previous Article
    Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control
  • DCDS Home
  • This Issue
  • Next Article
    A convex-concave elliptic problem with a parameter on the boundary condition
April  2012, 32(4): 1125-1167. doi: 10.3934/dcds.2012.32.1125

Second order approximations of quasistatic evolution problems in finite dimension

1. 

via Bonomea 265, 34136 Trieste, Italy

Received  November 2010 Revised  April 2011 Published  October 2011

In this paper, we study the limit, as $\epsilon$ goes to zero, of a particular solution of the equation $\epsilon^2A\ddot u^{\epsilon}(t)+\epsilon B\dot u^{\epsilon}(t)+\nabla_xf(t,u^{\epsilon}(t))=0$, where $f(t,x)$ is a potential satisfying suitable coerciveness conditions. The limit $u(t)$ of $u^{\epsilon}(t)$ is piece-wise continuous and verifies $\nabla_xf(t,u(t))=0$. Moreover, certain jump conditions characterize the behaviour of $u(t)$ at the discontinuity times. The same limit behaviour is obtained by considering a different approximation scheme based on time discretization and on the solutions of suitable autonomous systems.
Citation: Virginia Agostiniani. Second order approximations of quasistatic evolution problems in finite dimension. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1125-1167. doi: 10.3934/dcds.2012.32.1125
References:
[1]

F. Cagnetti, A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path,, Math. Models Methods Appl. Sci., 18 (2008), 1027.  doi: 10.1142/S0218202508002942.  Google Scholar

[2]

G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening,, Arch. Ration. Mech. Anal., 189 (2008), 469.  doi: 10.1007/s00205-008-0117-5.  Google Scholar

[3]

G. Dal Maso, A. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling,, Calc. Var. Partial Differential Equations, 40 (2011), 125.   Google Scholar

[4]

G. Dal Maso, A. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution,, SISSA preprint 46/2010/M., ().   Google Scholar

[5]

G. Dal Maso and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: the spatially homogeneous case,, Netw. Heterog. Media, 5 (2010), 97.   Google Scholar

[6]

M. A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity,, J. Convex Anal., 13 (2006), 151.   Google Scholar

[7]

J. Guckenheimer and P. Holme, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations on Vector Fields,", Applied Mathematical Sciences, 42 (1983).   Google Scholar

[8]

J. K. Hale, "Ordinary Differential Equations,", Pure and Applied Mathematics, XX1 (1980).   Google Scholar

[9]

M. W. Hirsch, "Differential Topology,", Graduate Texts in Mathematics, 33 (1976).   Google Scholar

[10]

D. Knees, A. Mielke and C. Zanini, Crack growth in polyconvex materials,, Phys. D, 239 (2010), 1470.  doi: 10.1016/j.physd.2009.02.008.  Google Scholar

[11]

A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces,, Discrete Contin. Dyn. Syst., 25 (2009), 585.  doi: 10.3934/dcds.2009.25.585.  Google Scholar

[12]

A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems,, ESAIM Control Optim. Calc. Var., (2011).  doi: 10.1051/cocv/2010054.  Google Scholar

[13]

F. Solombrino, Quasistatic evolution for plasticity with softening: the spatially homogeneous case,, Discrete Contin. Dyn. Syst., 27 (2010), 1189.  doi: 10.3934/dcds.2010.27.1189.  Google Scholar

[14]

R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth,, Boll. Unione Mat. Ital. (9), 2 (2009), 1.   Google Scholar

[15]

C. Zanini, Singular perturbation of finite dimensional gradient flows,, Discrete Contin. Dyn. Syst., 18 (2007), 657.  doi: 10.3934/dcds.2007.18.657.  Google Scholar

show all references

References:
[1]

F. Cagnetti, A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path,, Math. Models Methods Appl. Sci., 18 (2008), 1027.  doi: 10.1142/S0218202508002942.  Google Scholar

[2]

G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening,, Arch. Ration. Mech. Anal., 189 (2008), 469.  doi: 10.1007/s00205-008-0117-5.  Google Scholar

[3]

G. Dal Maso, A. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling,, Calc. Var. Partial Differential Equations, 40 (2011), 125.   Google Scholar

[4]

G. Dal Maso, A. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution,, SISSA preprint 46/2010/M., ().   Google Scholar

[5]

G. Dal Maso and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: the spatially homogeneous case,, Netw. Heterog. Media, 5 (2010), 97.   Google Scholar

[6]

M. A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity,, J. Convex Anal., 13 (2006), 151.   Google Scholar

[7]

J. Guckenheimer and P. Holme, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations on Vector Fields,", Applied Mathematical Sciences, 42 (1983).   Google Scholar

[8]

J. K. Hale, "Ordinary Differential Equations,", Pure and Applied Mathematics, XX1 (1980).   Google Scholar

[9]

M. W. Hirsch, "Differential Topology,", Graduate Texts in Mathematics, 33 (1976).   Google Scholar

[10]

D. Knees, A. Mielke and C. Zanini, Crack growth in polyconvex materials,, Phys. D, 239 (2010), 1470.  doi: 10.1016/j.physd.2009.02.008.  Google Scholar

[11]

A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces,, Discrete Contin. Dyn. Syst., 25 (2009), 585.  doi: 10.3934/dcds.2009.25.585.  Google Scholar

[12]

A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems,, ESAIM Control Optim. Calc. Var., (2011).  doi: 10.1051/cocv/2010054.  Google Scholar

[13]

F. Solombrino, Quasistatic evolution for plasticity with softening: the spatially homogeneous case,, Discrete Contin. Dyn. Syst., 27 (2010), 1189.  doi: 10.3934/dcds.2010.27.1189.  Google Scholar

[14]

R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth,, Boll. Unione Mat. Ital. (9), 2 (2009), 1.   Google Scholar

[15]

C. Zanini, Singular perturbation of finite dimensional gradient flows,, Discrete Contin. Dyn. Syst., 18 (2007), 657.  doi: 10.3934/dcds.2007.18.657.  Google Scholar

[1]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279

[2]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[3]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[4]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294

[5]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[6]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[7]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[8]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[9]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[10]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[11]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[12]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[13]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[14]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[15]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[16]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[17]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[18]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[19]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

[20]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]