Advanced Search
Article Contents
Article Contents

On isotopy and unimodal inverse limit spaces

Abstract Related Papers Cited by
  • We prove that every self-homeomorphism $h : K_s \to K_s$ on the inverse limit space $K_s$ of tent map $T_s$ with slope $s \in (\sqrt 2, 2]$ is isotopic to a power of the shift-homeomorphism $\sigma^R : K_s \to K_s$.
    Mathematics Subject Classification: Primary: 54H20; Secondary: 37B45, 37E05.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Barge, K. Brucks and B. Diamond, Self-similarity in inverse limit spaces of the tent family, Proc. Amer. Math. Soc., 124 (1996), 3563-3570.doi: 10.1090/S0002-9939-96-03690-8.


    M. Barge, H. Bruin and S. Štimac, The Ingram conjecture, preprint, 2009, arXiv:0912.4645.


    L. Block, S. Jakimovik, J. Keesling and L. Kailhofer, On the classification of inverse limits of tent maps, Fund. Math., 187 (2005), 171-192.doi: 10.4064/fm187-2-5.


    L. Block, J. Keesling, B. Raines and S. Štimac, Homeomorphisms of unimodal inverse limit spaces with non-recurrent critical point, Topology Appl., 156 (2009), 2417-2425.doi: 10.1016/j.topol.2009.06.006.


    K. Brucks and H. Bruin, Subcontinua of inverse limit spaces of unimodal maps, Fund. Math., 160 (1999), 219-246.


    K. Brucks and B. Diamond, A symbolic representation of inverse limit spaces for a class of unimodal maps, in "Continua" (Cincinnati, OH, 1994), 207-226, Lect. Notes in Pure and Appl. Math. 170, Dekker, New York, 1995.


    K. Brucks and M. Misiurewicz, The trajectory of the turning point is dense for almost all tent maps, Ergod. Th. and Dyn. Sys., 16 (1996), 1173-1183.doi: 10.1017/S0143385700009962.


    H. Bruin, Subcontinua of Fibonacci-like unimodal inverse limit spaces, Topology Proceedings, 31 (2007), 37-50.


    L. Kailhofer, A classification of inverse limit spaces of tent maps with periodic critical points, Fund. Math., 177 (2003), 95-120.doi: 10.4064/fm177-2-1.


    B. Raines, Inhomogeneities in non-hyperbolic one-dimensional invariant sets, Fund. Math., 182 (2004), 241-268.doi: 10.4064/fm182-3-4.


    B. Raines and S. Štimac, A classification of inverse limit spaces of tent maps with nonrecurrent critical point, Algebraic and Geometric Topology, 9 (2009), 1049-1088.doi: 10.2140/agt.2009.9.1049.


    S. Štimac, A classification of inverse limit spaces of tent maps with finite critical orbit, Topology Appl., 154 (2007), 2265-2281.

  • 加载中

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint