\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On isotopy and unimodal inverse limit spaces

Abstract Related Papers Cited by
  • We prove that every self-homeomorphism $h : K_s \to K_s$ on the inverse limit space $K_s$ of tent map $T_s$ with slope $s \in (\sqrt 2, 2]$ is isotopic to a power of the shift-homeomorphism $\sigma^R : K_s \to K_s$.
    Mathematics Subject Classification: Primary: 54H20; Secondary: 37B45, 37E05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Barge, K. Brucks and B. Diamond, Self-similarity in inverse limit spaces of the tent family, Proc. Amer. Math. Soc., 124 (1996), 3563-3570.doi: 10.1090/S0002-9939-96-03690-8.

    [2]

    M. Barge, H. Bruin and S. Štimac, The Ingram conjecture, preprint, 2009, arXiv:0912.4645.

    [3]

    L. Block, S. Jakimovik, J. Keesling and L. Kailhofer, On the classification of inverse limits of tent maps, Fund. Math., 187 (2005), 171-192.doi: 10.4064/fm187-2-5.

    [4]

    L. Block, J. Keesling, B. Raines and S. Štimac, Homeomorphisms of unimodal inverse limit spaces with non-recurrent critical point, Topology Appl., 156 (2009), 2417-2425.doi: 10.1016/j.topol.2009.06.006.

    [5]

    K. Brucks and H. Bruin, Subcontinua of inverse limit spaces of unimodal maps, Fund. Math., 160 (1999), 219-246.

    [6]

    K. Brucks and B. Diamond, A symbolic representation of inverse limit spaces for a class of unimodal maps, in "Continua" (Cincinnati, OH, 1994), 207-226, Lect. Notes in Pure and Appl. Math. 170, Dekker, New York, 1995.

    [7]

    K. Brucks and M. Misiurewicz, The trajectory of the turning point is dense for almost all tent maps, Ergod. Th. and Dyn. Sys., 16 (1996), 1173-1183.doi: 10.1017/S0143385700009962.

    [8]

    H. Bruin, Subcontinua of Fibonacci-like unimodal inverse limit spaces, Topology Proceedings, 31 (2007), 37-50.

    [9]

    L. Kailhofer, A classification of inverse limit spaces of tent maps with periodic critical points, Fund. Math., 177 (2003), 95-120.doi: 10.4064/fm177-2-1.

    [10]

    B. Raines, Inhomogeneities in non-hyperbolic one-dimensional invariant sets, Fund. Math., 182 (2004), 241-268.doi: 10.4064/fm182-3-4.

    [11]

    B. Raines and S. Štimac, A classification of inverse limit spaces of tent maps with nonrecurrent critical point, Algebraic and Geometric Topology, 9 (2009), 1049-1088.doi: 10.2140/agt.2009.9.1049.

    [12]

    S. Štimac, A classification of inverse limit spaces of tent maps with finite critical orbit, Topology Appl., 154 (2007), 2265-2281.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return