April  2012, 32(4): 1245-1253. doi: 10.3934/dcds.2012.32.1245

On isotopy and unimodal inverse limit spaces

1. 

Department of Mathematics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

2. 

Department of Mathematics, University of Zagreb, Bijenička 30, 10 000 Zagreb, Croatia

Received  October 2010 Revised  July 2011 Published  October 2011

We prove that every self-homeomorphism $h : K_s \to K_s$ on the inverse limit space $K_s$ of tent map $T_s$ with slope $s \in (\sqrt 2, 2]$ is isotopic to a power of the shift-homeomorphism $\sigma^R : K_s \to K_s$.
Citation: Henk Bruin, Sonja Štimac. On isotopy and unimodal inverse limit spaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1245-1253. doi: 10.3934/dcds.2012.32.1245
References:
[1]

M. Barge, K. Brucks and B. Diamond, Self-similarity in inverse limit spaces of the tent family,, Proc. Amer. Math. Soc., 124 (1996), 3563.  doi: 10.1090/S0002-9939-96-03690-8.  Google Scholar

[2]

M. Barge, H. Bruin and S. Štimac, The Ingram conjecture,, preprint, (2009).   Google Scholar

[3]

L. Block, S. Jakimovik, J. Keesling and L. Kailhofer, On the classification of inverse limits of tent maps,, Fund. Math., 187 (2005), 171.  doi: 10.4064/fm187-2-5.  Google Scholar

[4]

L. Block, J. Keesling, B. Raines and S. Štimac, Homeomorphisms of unimodal inverse limit spaces with non-recurrent critical point,, Topology Appl., 156 (2009), 2417.  doi: 10.1016/j.topol.2009.06.006.  Google Scholar

[5]

K. Brucks and H. Bruin, Subcontinua of inverse limit spaces of unimodal maps,, Fund. Math., 160 (1999), 219.   Google Scholar

[6]

K. Brucks and B. Diamond, A symbolic representation of inverse limit spaces for a class of unimodal maps,, in, 170 (1994), 207.   Google Scholar

[7]

K. Brucks and M. Misiurewicz, The trajectory of the turning point is dense for almost all tent maps,, Ergod. Th. and Dyn. Sys., 16 (1996), 1173.  doi: 10.1017/S0143385700009962.  Google Scholar

[8]

H. Bruin, Subcontinua of Fibonacci-like unimodal inverse limit spaces,, Topology Proceedings, 31 (2007), 37.   Google Scholar

[9]

L. Kailhofer, A classification of inverse limit spaces of tent maps with periodic critical points,, Fund. Math., 177 (2003), 95.  doi: 10.4064/fm177-2-1.  Google Scholar

[10]

B. Raines, Inhomogeneities in non-hyperbolic one-dimensional invariant sets,, Fund. Math., 182 (2004), 241.  doi: 10.4064/fm182-3-4.  Google Scholar

[11]

B. Raines and S. Štimac, A classification of inverse limit spaces of tent maps with nonrecurrent critical point,, Algebraic and Geometric Topology, 9 (2009), 1049.  doi: 10.2140/agt.2009.9.1049.  Google Scholar

[12]

S. Štimac, A classification of inverse limit spaces of tent maps with finite critical orbit,, Topology Appl., 154 (2007), 2265.   Google Scholar

show all references

References:
[1]

M. Barge, K. Brucks and B. Diamond, Self-similarity in inverse limit spaces of the tent family,, Proc. Amer. Math. Soc., 124 (1996), 3563.  doi: 10.1090/S0002-9939-96-03690-8.  Google Scholar

[2]

M. Barge, H. Bruin and S. Štimac, The Ingram conjecture,, preprint, (2009).   Google Scholar

[3]

L. Block, S. Jakimovik, J. Keesling and L. Kailhofer, On the classification of inverse limits of tent maps,, Fund. Math., 187 (2005), 171.  doi: 10.4064/fm187-2-5.  Google Scholar

[4]

L. Block, J. Keesling, B. Raines and S. Štimac, Homeomorphisms of unimodal inverse limit spaces with non-recurrent critical point,, Topology Appl., 156 (2009), 2417.  doi: 10.1016/j.topol.2009.06.006.  Google Scholar

[5]

K. Brucks and H. Bruin, Subcontinua of inverse limit spaces of unimodal maps,, Fund. Math., 160 (1999), 219.   Google Scholar

[6]

K. Brucks and B. Diamond, A symbolic representation of inverse limit spaces for a class of unimodal maps,, in, 170 (1994), 207.   Google Scholar

[7]

K. Brucks and M. Misiurewicz, The trajectory of the turning point is dense for almost all tent maps,, Ergod. Th. and Dyn. Sys., 16 (1996), 1173.  doi: 10.1017/S0143385700009962.  Google Scholar

[8]

H. Bruin, Subcontinua of Fibonacci-like unimodal inverse limit spaces,, Topology Proceedings, 31 (2007), 37.   Google Scholar

[9]

L. Kailhofer, A classification of inverse limit spaces of tent maps with periodic critical points,, Fund. Math., 177 (2003), 95.  doi: 10.4064/fm177-2-1.  Google Scholar

[10]

B. Raines, Inhomogeneities in non-hyperbolic one-dimensional invariant sets,, Fund. Math., 182 (2004), 241.  doi: 10.4064/fm182-3-4.  Google Scholar

[11]

B. Raines and S. Štimac, A classification of inverse limit spaces of tent maps with nonrecurrent critical point,, Algebraic and Geometric Topology, 9 (2009), 1049.  doi: 10.2140/agt.2009.9.1049.  Google Scholar

[12]

S. Štimac, A classification of inverse limit spaces of tent maps with finite critical orbit,, Topology Appl., 154 (2007), 2265.   Google Scholar

[1]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[2]

Tan Bui-Thanh, Omar Ghattas. A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors. Inverse Problems & Imaging, 2015, 9 (1) : 27-53. doi: 10.3934/ipi.2015.9.27

[3]

Ihsane Bikri, Ronald B. Guenther, Enrique A. Thomann. The Dirichlet to Neumann map - An application to the Stokes problem in half space. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 221-230. doi: 10.3934/dcdss.2010.3.221

[4]

Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2213-2219. doi: 10.3934/cpaa.2012.11.2213

[5]

Ana Anušić, Henk Bruin, Jernej Činč. Uncountably many planar embeddings of unimodal inverse limit spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2285-2300. doi: 10.3934/dcds.2017100

[6]

Chris Good, Robin Knight, Brian Raines. Countable inverse limits of postcritical $w$-limit sets of unimodal maps. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1059-1078. doi: 10.3934/dcds.2010.27.1059

[7]

Francisco Balibrea, J.L. García Guirao, J.I. Muñoz Casado. A triangular map on $I^{2}$ whose $\omega$-limit sets are all compact intervals of $\{0\}\times I$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 983-994. doi: 10.3934/dcds.2002.8.983

[8]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[9]

Luís Silva. Periodic attractors of nonautonomous flat-topped tent systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1867-1874. doi: 10.3934/dcdsb.2018243

[10]

T. J. Sullivan. Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors. Inverse Problems & Imaging, 2017, 11 (5) : 857-874. doi: 10.3934/ipi.2017040

[11]

Toshiyuki Suzuki. Nonlinear Schrödinger equations with inverse-square potentials in two dimensional space. Conference Publications, 2015, 2015 (special) : 1019-1024. doi: 10.3934/proc.2015.1019

[12]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[13]

Suna Ma, Huiyuan Li, Zhimin Zhang. Novel spectral methods for Schrödinger equations with an inverse square potential on the whole space. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1589-1615. doi: 10.3934/dcdsb.2018221

[14]

Kaitlyn (Voccola) Muller. A reproducing kernel Hilbert space framework for inverse scattering problems within the Born approximation. Inverse Problems & Imaging, 2019, 13 (6) : 1327-1348. doi: 10.3934/ipi.2019058

[15]

Rebecca McKay, Theodore Kolokolnikov. Stability transitions and dynamics of mesa patterns near the shadow limit of reaction-diffusion systems in one space dimension. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 191-220. doi: 10.3934/dcdsb.2012.17.191

[16]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[17]

Lluís Alsedà, Michał Misiurewicz. Semiconjugacy to a map of a constant slope. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3403-3413. doi: 10.3934/dcdsb.2015.20.3403

[18]

Richard Evan Schwartz. Outer billiards and the pinwheel map. Journal of Modern Dynamics, 2011, 5 (2) : 255-283. doi: 10.3934/jmd.2011.5.255

[19]

Valentin Ovsienko, Richard Schwartz, Serge Tabachnikov. Quasiperiodic motion for the pentagram map. Electronic Research Announcements, 2009, 16: 1-8. doi: 10.3934/era.2009.16.1

[20]

John Erik Fornæss, Brendan Weickert. A quantized henon map. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 723-740. doi: 10.3934/dcds.2000.6.723

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]