April  2012, 32(4): 1245-1253. doi: 10.3934/dcds.2012.32.1245

On isotopy and unimodal inverse limit spaces

1. 

Department of Mathematics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

2. 

Department of Mathematics, University of Zagreb, Bijenička 30, 10 000 Zagreb, Croatia

Received  October 2010 Revised  July 2011 Published  October 2011

We prove that every self-homeomorphism $h : K_s \to K_s$ on the inverse limit space $K_s$ of tent map $T_s$ with slope $s \in (\sqrt 2, 2]$ is isotopic to a power of the shift-homeomorphism $\sigma^R : K_s \to K_s$.
Citation: Henk Bruin, Sonja Štimac. On isotopy and unimodal inverse limit spaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1245-1253. doi: 10.3934/dcds.2012.32.1245
References:
[1]

M. Barge, K. Brucks and B. Diamond, Self-similarity in inverse limit spaces of the tent family,, Proc. Amer. Math. Soc., 124 (1996), 3563.  doi: 10.1090/S0002-9939-96-03690-8.  Google Scholar

[2]

M. Barge, H. Bruin and S. Štimac, The Ingram conjecture,, preprint, (2009).   Google Scholar

[3]

L. Block, S. Jakimovik, J. Keesling and L. Kailhofer, On the classification of inverse limits of tent maps,, Fund. Math., 187 (2005), 171.  doi: 10.4064/fm187-2-5.  Google Scholar

[4]

L. Block, J. Keesling, B. Raines and S. Štimac, Homeomorphisms of unimodal inverse limit spaces with non-recurrent critical point,, Topology Appl., 156 (2009), 2417.  doi: 10.1016/j.topol.2009.06.006.  Google Scholar

[5]

K. Brucks and H. Bruin, Subcontinua of inverse limit spaces of unimodal maps,, Fund. Math., 160 (1999), 219.   Google Scholar

[6]

K. Brucks and B. Diamond, A symbolic representation of inverse limit spaces for a class of unimodal maps,, in, 170 (1994), 207.   Google Scholar

[7]

K. Brucks and M. Misiurewicz, The trajectory of the turning point is dense for almost all tent maps,, Ergod. Th. and Dyn. Sys., 16 (1996), 1173.  doi: 10.1017/S0143385700009962.  Google Scholar

[8]

H. Bruin, Subcontinua of Fibonacci-like unimodal inverse limit spaces,, Topology Proceedings, 31 (2007), 37.   Google Scholar

[9]

L. Kailhofer, A classification of inverse limit spaces of tent maps with periodic critical points,, Fund. Math., 177 (2003), 95.  doi: 10.4064/fm177-2-1.  Google Scholar

[10]

B. Raines, Inhomogeneities in non-hyperbolic one-dimensional invariant sets,, Fund. Math., 182 (2004), 241.  doi: 10.4064/fm182-3-4.  Google Scholar

[11]

B. Raines and S. Štimac, A classification of inverse limit spaces of tent maps with nonrecurrent critical point,, Algebraic and Geometric Topology, 9 (2009), 1049.  doi: 10.2140/agt.2009.9.1049.  Google Scholar

[12]

S. Štimac, A classification of inverse limit spaces of tent maps with finite critical orbit,, Topology Appl., 154 (2007), 2265.   Google Scholar

show all references

References:
[1]

M. Barge, K. Brucks and B. Diamond, Self-similarity in inverse limit spaces of the tent family,, Proc. Amer. Math. Soc., 124 (1996), 3563.  doi: 10.1090/S0002-9939-96-03690-8.  Google Scholar

[2]

M. Barge, H. Bruin and S. Štimac, The Ingram conjecture,, preprint, (2009).   Google Scholar

[3]

L. Block, S. Jakimovik, J. Keesling and L. Kailhofer, On the classification of inverse limits of tent maps,, Fund. Math., 187 (2005), 171.  doi: 10.4064/fm187-2-5.  Google Scholar

[4]

L. Block, J. Keesling, B. Raines and S. Štimac, Homeomorphisms of unimodal inverse limit spaces with non-recurrent critical point,, Topology Appl., 156 (2009), 2417.  doi: 10.1016/j.topol.2009.06.006.  Google Scholar

[5]

K. Brucks and H. Bruin, Subcontinua of inverse limit spaces of unimodal maps,, Fund. Math., 160 (1999), 219.   Google Scholar

[6]

K. Brucks and B. Diamond, A symbolic representation of inverse limit spaces for a class of unimodal maps,, in, 170 (1994), 207.   Google Scholar

[7]

K. Brucks and M. Misiurewicz, The trajectory of the turning point is dense for almost all tent maps,, Ergod. Th. and Dyn. Sys., 16 (1996), 1173.  doi: 10.1017/S0143385700009962.  Google Scholar

[8]

H. Bruin, Subcontinua of Fibonacci-like unimodal inverse limit spaces,, Topology Proceedings, 31 (2007), 37.   Google Scholar

[9]

L. Kailhofer, A classification of inverse limit spaces of tent maps with periodic critical points,, Fund. Math., 177 (2003), 95.  doi: 10.4064/fm177-2-1.  Google Scholar

[10]

B. Raines, Inhomogeneities in non-hyperbolic one-dimensional invariant sets,, Fund. Math., 182 (2004), 241.  doi: 10.4064/fm182-3-4.  Google Scholar

[11]

B. Raines and S. Štimac, A classification of inverse limit spaces of tent maps with nonrecurrent critical point,, Algebraic and Geometric Topology, 9 (2009), 1049.  doi: 10.2140/agt.2009.9.1049.  Google Scholar

[12]

S. Štimac, A classification of inverse limit spaces of tent maps with finite critical orbit,, Topology Appl., 154 (2007), 2265.   Google Scholar

[1]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[2]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[3]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[4]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[5]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[6]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]