\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Spectral analysis for transition front solutions in Cahn-Hilliard systems

Abstract / Introduction Related Papers Cited by
  • We consider the spectrum associated with the linear operator obtained when a Cahn--Hilliard system on $\mathbb{R}$ is linearized about a transition wave solution. In many cases it's possible to show that the only non-negative eigenvalue is $\lambda = 0$, and so stability depends entirely on the nature of this neutral eigenvalue. In such cases, we identify a stability condition based on an appropriate Evans function, and we verify this condition under strong structural conditions on our equations. More generally, we discuss and implement a straightforward numerical check of our condition, valid under mild structural conditions.
    Mathematics Subject Classification: Primary: 35B35, 35P05; Secondary: 35Q99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. D. Alikakos, S. I. Betelu, and X. Chen, Explicit stationary solutions in multiple well dynamics and non-uniqueness of interfacial energy densities, European J. of Applied Mathematics, 17 (2006), 525-556.doi: 10.1017/S095679250600667X.

    [2]

    N. D. Alikakos and G. Fusco, On the connection problem for potentials with several global minima, Indiana Univ. Math. J., 57 (2008), 1871-1906.doi: 10.1512/iumj.2008.57.3181.

    [3]

    J. Alexander, R. Gardner and C. K. R. T. Jones, A topological invariant arising in the stability analysis of traveling waves, J. Reine Angew. Math., 410 (1990), 167-212.

    [4]

    J. Bricmont, A. Kupiainen and J. Taskinen, Stability of Cahn-Hilliard fronts, Comm. Pure Appl. Math., 52 (1999), 839-871.doi: 10.1002/(SICI)1097-0312(199907)52:7<839::AID-CPA4>3.0.CO;2-I.

    [5]

    F. Boyer and C. Lapuerta, Study of a three component Cahn-Hilliard flow model, Mathematical Modeling and Numerical Analysis, 40 (2006), 653-687.doi: 10.1051/m2an:2006028.

    [6]

    J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795-801.doi: 10.1016/0001-6160(61)90182-1.

    [7]

    J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I: Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.doi: 10.1063/1.1744102.

    [8]

    D. de Fontaine, "A Computer Simulation of the Evolution of Coherent Composition Variations in Solid Solutions,'' Ph. D. thesis, Northwestern University, 1967.

    [9]

    D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions I. Stability criteria, J. Phys. Chem. Solids, 33 (1972), 297-310.doi: 10.1016/0022-3697(72)90011-X.

    [10]

    D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions II. Fluctuations and kinetics, J. Phys. Chem. Solids, 34 (1973), 1285-1304.doi: 10.1016/S0022-3697(73)80026-5.

    [11]
    [12]

    D. J. Eyre, Systems of Cahn-Hilliard equations, SIAM J. Appl. Math., 53 (1993), 1686-1712.doi: 10.1137/0153078.

    [13]

    M. Giaquinta, "Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems," Annals of Mathematics Studies, Princeton University Press, 1983.

    [14]

    M. Giaquinta and E. Giusti, Differentiability of minima of non-differentiable functionals, Invent. Math., 72 (1983), 285-298.doi: 10.1007/BF01389324.

    [15]

    C. P. Grant, Slow motion in one-dimensional Cahn-Morral systems, SIAM J. Math. Anal., 26 (1995), 21-34.doi: 10.1137/S0036141092226053.

    [16]

    R. Gardner and K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math., 51 (1998), 797-855.doi: 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1.

    [17]

    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture notes in mathematics, Springer-Verlag, 840, 1981.

    [18]

    P. Howard, Pointwise estimates and stability for degenerate viscous shock waves, J. Reine Angew. Math., 545 (2002), 19-65.doi: 10.1515/crll.2002.034.

    [19]

    P. Howard, Local tracking and stability for degenerate viscous shock waves, J. Differential Eqns., 186 (2002), 440-469.

    [20]

    P. Howard, Asymptotic behavior near transition fronts for equations of generalized Cahn-Hilliard form, Commun. Math. Phys., 269 (2007), 765-808.doi: 10.1007/s00220-006-0102-5.

    [21]

    P. Howard, Asymptotic behavior near planar transition fronts for the Cahn-Hilliard equation, Phys. D, 229 (2007), 123-165.doi: 10.1016/j.physd.2007.03.018.

    [22]

    P. Howard, Spectral analysis of stationary solutions of the Cahn-Hilliard equation, Advances in Differential Equations, 14 (2009), 87-120.

    [23]

    P. Howard and B. KwonStability for transition front solutions in Cahn-Hilliard Systems, in preparation.

    [24]

    P. Howard and K. Zumbrun, The Evans function and stability criteria for degenerate viscous shock waves, Discrete and Continuous Dynamical Systems, 10 (2004), 837-855.doi: 10.3934/dcds.2004.10.837.

    [25]

    J. J. Hoyt, Spinodal decomposition in ternary alloys, Acta Metall., 37 (1989), 2489-2497.doi: 10.1016/0001-6160(89)90047-3.

    [26]

    J. Kim and K. Kang, A numerical method for the ternary Cahn-Hilliard system with a degenerate mobility, Applied Numerical Mathematics, 59 (2009), 1029-1042.doi: 10.1016/j.apnum.2008.04.004.

    [27]

    R. V. Kohn and X. Yan, Coarsening rates for models of multicomponent phase separation, Interfaces Free Bound., 6 (2004), 135-149.doi: 10.4171/IFB/94.

    [28]

    J. E. Morral and J. W. Cahn, Spinodal decomposition in ternary systems, Acta Metall., 19 (1971), 1037-1045.doi: 10.1016/0001-6160(71)90036-8.

    [29]
    [30]

    M. Reed and B. Simon, "Methods of Modern Mathematical Physics IV: Analysis of Operators," Academic Press, 1978.

    [31]

    V. Stefanopoulos, Heteroclinic connections for multiple-well potentials: The anisotropic case, Proc. Royal Soc. Edinburgh Sect. A, 138 (2008), 1313-1330.doi: 10.1017/S0308210507000145.

    [32]

    K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J., 47 (1998), 741-871. See also the errata for this paper: Indiana U. Math. J., 51 (2002), 1017-1021.doi: 10.1512/iumj.2002.51.2410.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return