Advanced Search
Article Contents
Article Contents

Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one

Abstract Related Papers Cited by
  • We consider a reaction-diffusion equation with a half-Laplacian. In the case where the solution is independent on time, the model reduces to the Peierls-Nabarro model describing dislocations as transition layers in a phase field setting. We introduce a suitable rescaling of the evolution equation, using a small parameter $\varepsilon$. As $\varepsilon$ goes to zero, we show that the limit dynamics is characterized by a system of ODEs describing the motion of particles with two-body interactions. The interaction forces are in $1/x$ and correspond to the well-known interaction between dislocations.
    Mathematics Subject Classification: 35Q99, 35B40, 35J25, 35D30, 35G25, 70F99.


    \begin{equation} \\ \end{equation}
  • [1]

    G. Alberti, G. Bouchitté and P. Seppecher, Un résultat de perturbations singulières avec la norme $H^{1/2}$, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 333-338.


    G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with the line-tension effect, Arch. Rational Mech. Anal., 144 (1998), 1-46.doi: 10.1007/s002050050111.


    O. Alvarez, P. Hoch, Y. Le Bouar and R. Monneau, Dislocation dynamics: Short-time existence and uniqueness of the solution, Arch. Ration. Mech. Anal., 181 (2006), 449-504.doi: 10.1007/s00205-006-0418-5.


    G. Barles and C. Imbert, Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 567-585.


    H. Brezis, "Analyse Fonctionnelle. Théorie et Applications," Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master's Degree], Masson, Paris, 1983.


    L. Bronsard and D. Hilhorst, On the slow dynamics for the Cahn-Hilliard equation in one space dimension, Proc. Roy. Soc. London Ser. A, 439 (1992), 669-682.doi: 10.1098/rspa.1992.0176.


    L. Bronsard and R. V. Kohn, On the slowness of phase boundary motion in one space dimension, Comm. Pure Appl. Math., 43 (1990), 983-997.doi: 10.1002/cpa.3160430804.


    X. Cabré and Y. SireNon-linear equations for fractional Laplacians I: Regularity, maximum principles and Hamiltoniam estimates, preprint, arXiv:1012.0867.


    X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005), 1678-1732.doi: 10.1002/cpa.20093.


    L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.


    J. Carr and R. L. Pego, Metastable patterns in solutions of $u_t=\epsilon^2u_{mathcalxmathcalx}-f(u)$, Comm. Pure Appl. Math., 42 (1989), 523-576.doi: 10.1002/cpa.3160420502.


    X. Chen, Generation, propagation, and annihilation of metastable patterns, J. Differential Equ., 206 (2004), 399-437.doi: 10.1016/j.jde.2004.05.017.


    F. Da Lio, N. Forcadel and R. Monneau, Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocation dynamics, J. Eur. Math. Soc. (JEMS), 10 (2008), 1061-1104.doi: 10.4171/JEMS/140.


    J. Droniou and C. Imbert, Fractal first-order partial differential equations, Arch. Ration. Mech. Anal., 182 (2006), 299-331.doi: 10.1007/s00205-006-0429-2.


    C. Denoual, Dynamic dislocation modeling by combining Peierls Nabarro and Galerkin methods, Phys. Rev. B, 70 (2004), 024106.doi: 10.1103/PhysRevB.70.024106.


    A. El Hajj, H. Ibrahim and R. Monneau, Dislocation dynamics: From microscopic models to macroscopic crystal plasticity, Continuum Mechanics and Thermodynamics, 21 (2009), 109-123.doi: 10.1007/s00161-009-0103-7.


    S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynamics Differential Equ., 14 (2002), 85-137.doi: 10.1023/A:1012980128575.


    L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.


    E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.


    A. Fino, H. Ibrahim and R. MonneauThe Peierls-Nabarro model as a limit of a Frenkel-Kontorova model, preprint, HAL: hal-00523488.


    N. Forcadel, C. Imbert and R. Monneau, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, Discrete Contin. Dyn. Syst., 23 (2009), 785-826.doi: 10.3934/dcds.2009.23.785.


    G. Fusco and J. K. Hale, Slow-motion manifolds, dormant instability, and singular perturbations, J. Dynam. Differential Equations, 1 (1989), 75-94.doi: 10.1007/BF01048791.


    A. Garroni and S. Müller, $\Gamma$-limit of a phase-field model of dislocations, SIAM J. Math. Anal., 36 (2005), 1943-1964.


    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224, Springer-Verlag, Berlin, 1983.


    M.d.M. González, Gamma convergence of an energy functional related to the fractional Laplacian, Calc. Var. Partial Differential Equations, 36 (2009), 173-210.


    C. P. Grant, Slow motion in one-dimensional Cahn-Morral systems, SIAM J. Math. Anal., 26 (1995), 21-34.


    J. R. Hirth and L. Lothe, "Theory of Dislocations," Second edition, Malabar, Florida: Krieger, 1992.


    C. Imbert and P. E. SouganidisPhasefield theory for fractional diffusion-reaction equations and applications, preprint, HAL: hal-00408680.


    W. D. Kalies, R. C. A. M. Van der Vorst and T. Wanner, Slow motion in higher-order systems and $\Gamma$-convergence in one space dimension, Nonlinear Anal., 44 (2001), 33-57.doi: 10.1016/S0362-546X(99)00245-X.


    M. Kurzke, The gradient flow motion of boundary vortices, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), no. 1, 91-112.


    P. Lévy, Sur les intégrales dont les éléments sont des variables aléatoires indépendantes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 3 (1934), 337-366.


    E. H. Lieb and M. Loss, "Analysis," Second edition, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 2001.


    V. G. Maz'ja, "Sobolev Spaces," Translated from the Russian by T. O. Shaposhnikova, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985.


    R. Monneau and S. PatriziHomogenization of the Peierls-Nabarro model for dislocation dynamics and the Orowan's law, preprint, HAL: hal-00504598.


    A. B. Movchan, R. Bullough and J. R. Willis, Stability of a dislocation: Discrete model, Eur. J. Appl. Math., 9 (1998), 373-396.doi: 10.1017/S0956792598003489.


    F. R. N. Nabarro, Fifty-year study of the Peierls-Nabarro stress, Material Science and Engineering A, 234-236 (1997), 67-76.doi: 10.1016/S0921-5093(97)00184-6.


    G. Palatucci, O. Savin and A. ValdinociLocal and global minimizers for a variational energy involving a fractional form, preprint, arXiv:1104.1725.


    L. Silvestre, "Regularity of the Obstacle Problem for a Fractional Power of the Laplace Operator," Ph.D thesis, The University of Texas at Austin, 2005.


    E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces," Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971.


    J. F. Toland, The Peierls-Nabarro and Benjamin-Ono equations, J. Funct. Anal., 145 (1997), 136-150.doi: 10.1006/jfan.1996.3016.


    H. Wei, Y. Xiang and P. Ming, A generalized Peierls-Nabarro model for curved dislocations using discrete Fourier transform, Communications in Computational Physics, 4 (2008), 275-293.

  • 加载中

Article Metrics

HTML views() PDF downloads(152) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint