April  2012, 32(4): 1255-1286. doi: 10.3934/dcds.2012.32.1255

Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one

1. 

Universitat Politècnica de Catalunya, ETSEIB - Departament de MA1, Av. Diagonal, 647, 08028 Barcelona, Spain

2. 

Université Paris-Est, Cermics, Ecole des Ponts ParisTech, 6 et 8 avenue Blaise Pascal, Cité Descartes, Champs-sur-Marne, 77455 Marne-la-Vallée Cedex 2, France

Received  July 2010 Revised  August 2011 Published  October 2011

We consider a reaction-diffusion equation with a half-Laplacian. In the case where the solution is independent on time, the model reduces to the Peierls-Nabarro model describing dislocations as transition layers in a phase field setting. We introduce a suitable rescaling of the evolution equation, using a small parameter $\varepsilon$. As $\varepsilon$ goes to zero, we show that the limit dynamics is characterized by a system of ODEs describing the motion of particles with two-body interactions. The interaction forces are in $1/x$ and correspond to the well-known interaction between dislocations.
Citation: María del Mar González, Regis Monneau. Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1255-1286. doi: 10.3934/dcds.2012.32.1255
References:
[1]

G. Alberti, G. Bouchitté and P. Seppecher, Un résultat de perturbations singulières avec la norme $H^{1/2}$,, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 333.   Google Scholar

[2]

G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with the line-tension effect,, Arch. Rational Mech. Anal., 144 (1998), 1.  doi: 10.1007/s002050050111.  Google Scholar

[3]

O. Alvarez, P. Hoch, Y. Le Bouar and R. Monneau, Dislocation dynamics: Short-time existence and uniqueness of the solution,, Arch. Ration. Mech. Anal., 181 (2006), 449.  doi: 10.1007/s00205-006-0418-5.  Google Scholar

[4]

G. Barles and C. Imbert, Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 567.   Google Scholar

[5]

H. Brezis, "Analyse Fonctionnelle. Théorie et Applications,", Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master's Degree], (1983).   Google Scholar

[6]

L. Bronsard and D. Hilhorst, On the slow dynamics for the Cahn-Hilliard equation in one space dimension,, Proc. Roy. Soc. London Ser. A, 439 (1992), 669.  doi: 10.1098/rspa.1992.0176.  Google Scholar

[7]

L. Bronsard and R. V. Kohn, On the slowness of phase boundary motion in one space dimension,, Comm. Pure Appl. Math., 43 (1990), 983.  doi: 10.1002/cpa.3160430804.  Google Scholar

[8]

X. Cabré and Y. Sire, Non-linear equations for fractional Laplacians I: Regularity, maximum principles and Hamiltoniam estimates,, preprint, ().   Google Scholar

[9]

X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions,, Comm. Pure Appl. Math., 58 (2005), 1678.  doi: 10.1002/cpa.20093.  Google Scholar

[10]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.   Google Scholar

[11]

J. Carr and R. L. Pego, Metastable patterns in solutions of $u_t=\epsilon^2u_{mathcalxmathcalx}-f(u)$,, Comm. Pure Appl. Math., 42 (1989), 523.  doi: 10.1002/cpa.3160420502.  Google Scholar

[12]

X. Chen, Generation, propagation, and annihilation of metastable patterns,, J. Differential Equ., 206 (2004), 399.  doi: 10.1016/j.jde.2004.05.017.  Google Scholar

[13]

F. Da Lio, N. Forcadel and R. Monneau, Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocation dynamics,, J. Eur. Math. Soc. (JEMS), 10 (2008), 1061.  doi: 10.4171/JEMS/140.  Google Scholar

[14]

J. Droniou and C. Imbert, Fractal first-order partial differential equations,, Arch. Ration. Mech. Anal., 182 (2006), 299.  doi: 10.1007/s00205-006-0429-2.  Google Scholar

[15]

C. Denoual, Dynamic dislocation modeling by combining Peierls Nabarro and Galerkin methods,, Phys. Rev. B, 70 (2004).  doi: 10.1103/PhysRevB.70.024106.  Google Scholar

[16]

A. El Hajj, H. Ibrahim and R. Monneau, Dislocation dynamics: From microscopic models to macroscopic crystal plasticity,, Continuum Mechanics and Thermodynamics, 21 (2009), 109.  doi: 10.1007/s00161-009-0103-7.  Google Scholar

[17]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems,, J. Dynamics Differential Equ., 14 (2002), 85.  doi: 10.1023/A:1012980128575.  Google Scholar

[18]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19,, American Mathematical Society, (1998).   Google Scholar

[19]

E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations,, Comm. Partial Differential Equations, 7 (1982), 77.   Google Scholar

[20]

A. Fino, H. Ibrahim and R. Monneau, The Peierls-Nabarro model as a limit of a Frenkel-Kontorova model,, preprint, ().   Google Scholar

[21]

N. Forcadel, C. Imbert and R. Monneau, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics,, Discrete Contin. Dyn. Syst., 23 (2009), 785.  doi: 10.3934/dcds.2009.23.785.  Google Scholar

[22]

G. Fusco and J. K. Hale, Slow-motion manifolds, dormant instability, and singular perturbations,, J. Dynam. Differential Equations, 1 (1989), 75.  doi: 10.1007/BF01048791.  Google Scholar

[23]

A. Garroni and S. Müller, $\Gamma$-limit of a phase-field model of dislocations,, SIAM J. Math. Anal., 36 (2005), 1943.   Google Scholar

[24]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224,, Springer-Verlag, (1983).   Google Scholar

[25]

M.d.M. González, Gamma convergence of an energy functional related to the fractional Laplacian,, Calc. Var. Partial Differential Equations, 36 (2009), 173.   Google Scholar

[26]

C. P. Grant, Slow motion in one-dimensional Cahn-Morral systems,, SIAM J. Math. Anal., 26 (1995), 21.   Google Scholar

[27]

J. R. Hirth and L. Lothe, "Theory of Dislocations,", Second edition, (1992).   Google Scholar

[28]

C. Imbert and P. E. Souganidis, Phasefield theory for fractional diffusion-reaction equations and applications,, preprint, ().   Google Scholar

[29]

W. D. Kalies, R. C. A. M. Van der Vorst and T. Wanner, Slow motion in higher-order systems and $\Gamma$-convergence in one space dimension,, Nonlinear Anal., 44 (2001), 33.  doi: 10.1016/S0362-546X(99)00245-X.  Google Scholar

[30]

M. Kurzke, The gradient flow motion of boundary vortices,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 91.   Google Scholar

[31]

P. Lévy, Sur les intégrales dont les éléments sont des variables aléatoires indépendantes,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 3 (1934), 337.   Google Scholar

[32]

E. H. Lieb and M. Loss, "Analysis," Second edition, Graduate Studies in Mathematics, 14,, American Mathematical Society, (2001).   Google Scholar

[33]

V. G. Maz'ja, "Sobolev Spaces,", Translated from the Russian by T. O. Shaposhnikova, (1985).   Google Scholar

[34]

R. Monneau and S. Patrizi, Homogenization of the Peierls-Nabarro model for dislocation dynamics and the Orowan's law,, preprint, ().   Google Scholar

[35]

A. B. Movchan, R. Bullough and J. R. Willis, Stability of a dislocation: Discrete model,, Eur. J. Appl. Math., 9 (1998), 373.  doi: 10.1017/S0956792598003489.  Google Scholar

[36]

F. R. N. Nabarro, Fifty-year study of the Peierls-Nabarro stress,, Material Science and Engineering A, 234-236 (1997), 234.  doi: 10.1016/S0921-5093(97)00184-6.  Google Scholar

[37]

G. Palatucci, O. Savin and A. Valdinoci, Local and global minimizers for a variational energy involving a fractional form,, preprint, ().   Google Scholar

[38]

L. Silvestre, "Regularity of the Obstacle Problem for a Fractional Power of the Laplace Operator,", Ph.D thesis, (2005).   Google Scholar

[39]

E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton Mathematical Series, (1971).   Google Scholar

[40]

J. F. Toland, The Peierls-Nabarro and Benjamin-Ono equations,, J. Funct. Anal., 145 (1997), 136.  doi: 10.1006/jfan.1996.3016.  Google Scholar

[41]

H. Wei, Y. Xiang and P. Ming, A generalized Peierls-Nabarro model for curved dislocations using discrete Fourier transform,, Communications in Computational Physics, 4 (2008), 275.   Google Scholar

show all references

References:
[1]

G. Alberti, G. Bouchitté and P. Seppecher, Un résultat de perturbations singulières avec la norme $H^{1/2}$,, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 333.   Google Scholar

[2]

G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with the line-tension effect,, Arch. Rational Mech. Anal., 144 (1998), 1.  doi: 10.1007/s002050050111.  Google Scholar

[3]

O. Alvarez, P. Hoch, Y. Le Bouar and R. Monneau, Dislocation dynamics: Short-time existence and uniqueness of the solution,, Arch. Ration. Mech. Anal., 181 (2006), 449.  doi: 10.1007/s00205-006-0418-5.  Google Scholar

[4]

G. Barles and C. Imbert, Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 567.   Google Scholar

[5]

H. Brezis, "Analyse Fonctionnelle. Théorie et Applications,", Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master's Degree], (1983).   Google Scholar

[6]

L. Bronsard and D. Hilhorst, On the slow dynamics for the Cahn-Hilliard equation in one space dimension,, Proc. Roy. Soc. London Ser. A, 439 (1992), 669.  doi: 10.1098/rspa.1992.0176.  Google Scholar

[7]

L. Bronsard and R. V. Kohn, On the slowness of phase boundary motion in one space dimension,, Comm. Pure Appl. Math., 43 (1990), 983.  doi: 10.1002/cpa.3160430804.  Google Scholar

[8]

X. Cabré and Y. Sire, Non-linear equations for fractional Laplacians I: Regularity, maximum principles and Hamiltoniam estimates,, preprint, ().   Google Scholar

[9]

X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions,, Comm. Pure Appl. Math., 58 (2005), 1678.  doi: 10.1002/cpa.20093.  Google Scholar

[10]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.   Google Scholar

[11]

J. Carr and R. L. Pego, Metastable patterns in solutions of $u_t=\epsilon^2u_{mathcalxmathcalx}-f(u)$,, Comm. Pure Appl. Math., 42 (1989), 523.  doi: 10.1002/cpa.3160420502.  Google Scholar

[12]

X. Chen, Generation, propagation, and annihilation of metastable patterns,, J. Differential Equ., 206 (2004), 399.  doi: 10.1016/j.jde.2004.05.017.  Google Scholar

[13]

F. Da Lio, N. Forcadel and R. Monneau, Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocation dynamics,, J. Eur. Math. Soc. (JEMS), 10 (2008), 1061.  doi: 10.4171/JEMS/140.  Google Scholar

[14]

J. Droniou and C. Imbert, Fractal first-order partial differential equations,, Arch. Ration. Mech. Anal., 182 (2006), 299.  doi: 10.1007/s00205-006-0429-2.  Google Scholar

[15]

C. Denoual, Dynamic dislocation modeling by combining Peierls Nabarro and Galerkin methods,, Phys. Rev. B, 70 (2004).  doi: 10.1103/PhysRevB.70.024106.  Google Scholar

[16]

A. El Hajj, H. Ibrahim and R. Monneau, Dislocation dynamics: From microscopic models to macroscopic crystal plasticity,, Continuum Mechanics and Thermodynamics, 21 (2009), 109.  doi: 10.1007/s00161-009-0103-7.  Google Scholar

[17]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems,, J. Dynamics Differential Equ., 14 (2002), 85.  doi: 10.1023/A:1012980128575.  Google Scholar

[18]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19,, American Mathematical Society, (1998).   Google Scholar

[19]

E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations,, Comm. Partial Differential Equations, 7 (1982), 77.   Google Scholar

[20]

A. Fino, H. Ibrahim and R. Monneau, The Peierls-Nabarro model as a limit of a Frenkel-Kontorova model,, preprint, ().   Google Scholar

[21]

N. Forcadel, C. Imbert and R. Monneau, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics,, Discrete Contin. Dyn. Syst., 23 (2009), 785.  doi: 10.3934/dcds.2009.23.785.  Google Scholar

[22]

G. Fusco and J. K. Hale, Slow-motion manifolds, dormant instability, and singular perturbations,, J. Dynam. Differential Equations, 1 (1989), 75.  doi: 10.1007/BF01048791.  Google Scholar

[23]

A. Garroni and S. Müller, $\Gamma$-limit of a phase-field model of dislocations,, SIAM J. Math. Anal., 36 (2005), 1943.   Google Scholar

[24]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224,, Springer-Verlag, (1983).   Google Scholar

[25]

M.d.M. González, Gamma convergence of an energy functional related to the fractional Laplacian,, Calc. Var. Partial Differential Equations, 36 (2009), 173.   Google Scholar

[26]

C. P. Grant, Slow motion in one-dimensional Cahn-Morral systems,, SIAM J. Math. Anal., 26 (1995), 21.   Google Scholar

[27]

J. R. Hirth and L. Lothe, "Theory of Dislocations,", Second edition, (1992).   Google Scholar

[28]

C. Imbert and P. E. Souganidis, Phasefield theory for fractional diffusion-reaction equations and applications,, preprint, ().   Google Scholar

[29]

W. D. Kalies, R. C. A. M. Van der Vorst and T. Wanner, Slow motion in higher-order systems and $\Gamma$-convergence in one space dimension,, Nonlinear Anal., 44 (2001), 33.  doi: 10.1016/S0362-546X(99)00245-X.  Google Scholar

[30]

M. Kurzke, The gradient flow motion of boundary vortices,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 91.   Google Scholar

[31]

P. Lévy, Sur les intégrales dont les éléments sont des variables aléatoires indépendantes,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 3 (1934), 337.   Google Scholar

[32]

E. H. Lieb and M. Loss, "Analysis," Second edition, Graduate Studies in Mathematics, 14,, American Mathematical Society, (2001).   Google Scholar

[33]

V. G. Maz'ja, "Sobolev Spaces,", Translated from the Russian by T. O. Shaposhnikova, (1985).   Google Scholar

[34]

R. Monneau and S. Patrizi, Homogenization of the Peierls-Nabarro model for dislocation dynamics and the Orowan's law,, preprint, ().   Google Scholar

[35]

A. B. Movchan, R. Bullough and J. R. Willis, Stability of a dislocation: Discrete model,, Eur. J. Appl. Math., 9 (1998), 373.  doi: 10.1017/S0956792598003489.  Google Scholar

[36]

F. R. N. Nabarro, Fifty-year study of the Peierls-Nabarro stress,, Material Science and Engineering A, 234-236 (1997), 234.  doi: 10.1016/S0921-5093(97)00184-6.  Google Scholar

[37]

G. Palatucci, O. Savin and A. Valdinoci, Local and global minimizers for a variational energy involving a fractional form,, preprint, ().   Google Scholar

[38]

L. Silvestre, "Regularity of the Obstacle Problem for a Fractional Power of the Laplace Operator,", Ph.D thesis, (2005).   Google Scholar

[39]

E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton Mathematical Series, (1971).   Google Scholar

[40]

J. F. Toland, The Peierls-Nabarro and Benjamin-Ono equations,, J. Funct. Anal., 145 (1997), 136.  doi: 10.1006/jfan.1996.3016.  Google Scholar

[41]

H. Wei, Y. Xiang and P. Ming, A generalized Peierls-Nabarro model for curved dislocations using discrete Fourier transform,, Communications in Computational Physics, 4 (2008), 275.   Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[5]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[10]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[11]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[12]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[13]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[14]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[15]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[16]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[17]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[20]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (24)

Other articles
by authors

[Back to Top]