Citation: |
[1] |
D. K. Arrowsmith and C. M. Place, "An Introduction to Dynamical Systems," Cambridge University Press, Cambridge, 1990. |
[2] |
F. Balibrea and J. C. Valverde, Bifurcations under nondegenerated conditions of higher degree and a new simple proof of the Hopf-Neimark-Sacker bifurcation theorem, J. Math. Anal. Appl., 237 (1999), 93-105.doi: 10.1006/jmaa.1999.6460. |
[3] |
F. Balibrea and J. C. Valverde, Cusp and generalized flip bifurcations under higher degree conditions, Nonlinear Anal., 52 (2003), 405-419.doi: 10.1016/S0362-546X(01)00908-7. |
[4] |
N. Elezović, V. Županović and D. Žubrinić, Box dimension of trajectories of some discrete dynamical systems, Chaos Solitons Fractals, 34 (2007), 244-252.doi: 10.1016/j.chaos.2006.03.060. |
[5] |
K. Falconer, "Fractal Geometry: Mathematical Foundations and Applications," John Wiley & Sons, Ltd., Chichester, 1990. |
[6] |
Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," 2^{nd} edition, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 1998. |
[7] |
M. L. Lapidus and C. Pomerance, The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums, Proc. London Math. Soc. (3), 66 (1993), 41-69. |
[8] |
P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability," Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995. |
[9] |
J. Palis and F. Takens, "Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors," Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, Cambridge, 1993. |
[10] |
M. Pašić, Minkowski-Bouligand dimension of solutions of the one-dimensional $p$-Laplacian, J. Differential Equations, 190 (2003), 268-305.doi: 10.1016/S0022-0396(02)00149-3. |
[11] |
M. Pašić, D. Žubrinić and V. Županović, Oscillatory and phase dimensions of solutions of some second-order differential equations, Bull. Sci. Math., 133 (2009), 859-874. |
[12] |
L. Perko, "Differential Equations and Dynamical Systems," 2^{nd} edition, Texts in Applied Mathematics, 7, Springer-Verlag, New York, 1996. |
[13] |
C. Tricot, "Curves and Fractal Dimension," With a foreword by Michel Mendès France, Springer-Verlag, New York, 1995. |
[14] |
S. Wiggins, "Introduction to Applied Non-linear Dynamical Systems and Chaos," 2^{nd} edition, Texts in Applied Mathematics, 2, Springer-Verlag, New York, 2003. |
[15] |
D. Žubrinić, Analysis of Minkowski content of fractal sets and applications, Real Anal. Exchange, 31 (2005/06), 315-354. |
[16] |
D. Žubrinić and V. Županović, Fractal dimension in dynamics, in "Encyclopedia of Math. Physics" (eds. J.-P. Françoise, G. L. Naber and S. T. Tsou), Academic Press/Elsevier Science, Oxford, (2006), 394-402. |
[17] |
D. Žubrinić and V. Županović, Poincaré map in fractal analysis of spiral trajectories of planar vector fields, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 947-960. |
[18] |
D. Žubrinić and V. Županović, Fractal analysis of spiral trajectories of some planar vector fields, Bull. Sci. Math., 129 (2005), 457-485. |
[19] |
D. Žubrinić and V. Županović, Fractal analysis of spiral trajectories of some vector fields in $\mathbbR^3$, C. R. Math. Acad. Sci. Paris, 342 (2006), 959-963. |