April  2012, 32(4): 1391-1420. doi: 10.3934/dcds.2012.32.1391

Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains

1. 

Center for Partial Differential Equations, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China

2. 

Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477

Received  October 2010 Revised  August 2011 Published  October 2011

In this paper, we study a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains. By upper and lower solution method, we obtain a sufficient condition for a hypersurface $S$ in the domain $\Omega$ to support stable transition layers, and a necessary condition for $S$ in $\Omega$ to support transition layers, not necessarily stable. In addition, sharp estimates on depths of transition layers have also been derived.
Citation: Fang Li, Kimie Nakashima. Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1391-1420. doi: 10.3934/dcds.2012.32.1391
References:
[1]

P. Fife, "Dynamics of Internal Layers and Diffusive Interfaces,", CBMS-NSF Regional Conference Series in Applied Mathematics, 53 (1988).   Google Scholar

[2]

P. Faĭf and U. Grinli, Interior transition layers for elliptic boundary value problems with a small parameter,, Uspehi Mat. Nauk, 29 (1974), 103.   Google Scholar

[3]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[4]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, in, (1981), 369.   Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[6]

J. Hale and K. Sakamoto, Existence and stability of transition layers,, Japan J. Appl. Math., 5 (1988), 367.  doi: 10.1007/BF03167908.  Google Scholar

[7]

R. V. Kohn and P. Sternberg, Local minimisers and singular perturbations,, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 69.   Google Scholar

[8]

F. Li, K. Nakashima and W.-M. Ni, Stability from the point of view of diffusion, relaxation and spatial inhomogeneity,, Discrete Contin. Dyn. Syst., 20 (2008), 259.   Google Scholar

[9]

A. Malchiodi, W.-M. Ni and J. Wei, Boundary-clustered interfaces for the Allen-Cahn equation,, Pacific J. Math., 229 (2007), 447.  doi: 10.2140/pjm.2007.229.447.  Google Scholar

[10]

H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations,, Publ. Res. Inst. Math. Sci., 15 (1979), 401.  doi: 10.2977/prims/1195188180.  Google Scholar

[11]

H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1984), 645.   Google Scholar

[12]

K. Nakashima, Stable transition layers in a balanced bistable equation,, Diff. Integral Eqns., 13 (2000), 1025.   Google Scholar

[13]

K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation,, J. Diff. Eqns., 191 (2003), 234.  doi: 10.1016/S0022-0396(02)00181-X.  Google Scholar

[14]

A. S. do Nascimento, Local minimizers induced by spatial inhomogeneity with inner transition layer,, J. Diff. Eqns., 133 (1997), 203.  doi: 10.1006/jdeq.1996.3206.  Google Scholar

[15]

N. N. Nefedov and K. Sakamoto, Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity,, Hiroshima Math. J., 33 (2003), 391.   Google Scholar

[16]

M. del Pino, M. Kowalczyk and J. Wei, Resonance and interior layers in an inhomogeneous phase transition model,, SIAM J. Math. Anal., 38 (2006), 1542.  doi: 10.1137/060649574.  Google Scholar

[17]

K. Sakamoto, Construction and stability analysis of transition layer solutions in reaction-diffusion systems,, Tohoku Math. J. (2), 42 (1990), 17.  doi: 10.2748/tmj/1178227692.  Google Scholar

[18]

D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems,, Indiana Univ. Math. J., 21 (1971), 979.  doi: 10.1512/iumj.1972.21.21079.  Google Scholar

show all references

References:
[1]

P. Fife, "Dynamics of Internal Layers and Diffusive Interfaces,", CBMS-NSF Regional Conference Series in Applied Mathematics, 53 (1988).   Google Scholar

[2]

P. Faĭf and U. Grinli, Interior transition layers for elliptic boundary value problems with a small parameter,, Uspehi Mat. Nauk, 29 (1974), 103.   Google Scholar

[3]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[4]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, in, (1981), 369.   Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[6]

J. Hale and K. Sakamoto, Existence and stability of transition layers,, Japan J. Appl. Math., 5 (1988), 367.  doi: 10.1007/BF03167908.  Google Scholar

[7]

R. V. Kohn and P. Sternberg, Local minimisers and singular perturbations,, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 69.   Google Scholar

[8]

F. Li, K. Nakashima and W.-M. Ni, Stability from the point of view of diffusion, relaxation and spatial inhomogeneity,, Discrete Contin. Dyn. Syst., 20 (2008), 259.   Google Scholar

[9]

A. Malchiodi, W.-M. Ni and J. Wei, Boundary-clustered interfaces for the Allen-Cahn equation,, Pacific J. Math., 229 (2007), 447.  doi: 10.2140/pjm.2007.229.447.  Google Scholar

[10]

H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations,, Publ. Res. Inst. Math. Sci., 15 (1979), 401.  doi: 10.2977/prims/1195188180.  Google Scholar

[11]

H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1984), 645.   Google Scholar

[12]

K. Nakashima, Stable transition layers in a balanced bistable equation,, Diff. Integral Eqns., 13 (2000), 1025.   Google Scholar

[13]

K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation,, J. Diff. Eqns., 191 (2003), 234.  doi: 10.1016/S0022-0396(02)00181-X.  Google Scholar

[14]

A. S. do Nascimento, Local minimizers induced by spatial inhomogeneity with inner transition layer,, J. Diff. Eqns., 133 (1997), 203.  doi: 10.1006/jdeq.1996.3206.  Google Scholar

[15]

N. N. Nefedov and K. Sakamoto, Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity,, Hiroshima Math. J., 33 (2003), 391.   Google Scholar

[16]

M. del Pino, M. Kowalczyk and J. Wei, Resonance and interior layers in an inhomogeneous phase transition model,, SIAM J. Math. Anal., 38 (2006), 1542.  doi: 10.1137/060649574.  Google Scholar

[17]

K. Sakamoto, Construction and stability analysis of transition layer solutions in reaction-diffusion systems,, Tohoku Math. J. (2), 42 (1990), 17.  doi: 10.2748/tmj/1178227692.  Google Scholar

[18]

D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems,, Indiana Univ. Math. J., 21 (1971), 979.  doi: 10.1512/iumj.1972.21.21079.  Google Scholar

[1]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[2]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[3]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[4]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[10]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[11]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[15]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[18]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[19]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[20]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]