\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains

Abstract Related Papers Cited by
  • In this paper, we study a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains. By upper and lower solution method, we obtain a sufficient condition for a hypersurface $S$ in the domain $\Omega$ to support stable transition layers, and a necessary condition for $S$ in $\Omega$ to support transition layers, not necessarily stable. In addition, sharp estimates on depths of transition layers have also been derived.
    Mathematics Subject Classification: Primary: 35J25, 35B25; Secondary: 35B35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Fife, "Dynamics of Internal Layers and Diffusive Interfaces," CBMS-NSF Regional Conference Series in Applied Mathematics, 53, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988.

    [2]

    P. Faĭf and U. Grinli, Interior transition layers for elliptic boundary value problems with a small parameter, Uspehi Mat. Nauk, 29 (1974), 103-131.

    [3]

    B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.doi: 10.1007/BF01221125.

    [4]

    B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$, in "Mathematical Analysis and Applications, Part A," 369-402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981.

    [5]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, 2001.

    [6]

    J. Hale and K. Sakamoto, Existence and stability of transition layers, Japan J. Appl. Math., 5 (1988), 367-405.doi: 10.1007/BF03167908.

    [7]

    R. V. Kohn and P. Sternberg, Local minimisers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 69-84.

    [8]

    F. Li, K. Nakashima and W.-M. Ni, Stability from the point of view of diffusion, relaxation and spatial inhomogeneity, Discrete Contin. Dyn. Syst., 20 (2008), 259-274.

    [9]

    A. Malchiodi, W.-M. Ni and J. Wei, Boundary-clustered interfaces for the Allen-Cahn equation, Pacific J. Math., 229 (2007), 447-468.doi: 10.2140/pjm.2007.229.447.

    [10]

    H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454.doi: 10.2977/prims/1195188180.

    [11]

    H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1984), 645-673.

    [12]

    K. Nakashima, Stable transition layers in a balanced bistable equation, Diff. Integral Eqns., 13 (2000), 1025-1038.

    [13]

    K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation, J. Diff. Eqns., 191 (2003), 234-276.doi: 10.1016/S0022-0396(02)00181-X.

    [14]

    A. S. do Nascimento, Local minimizers induced by spatial inhomogeneity with inner transition layer, J. Diff. Eqns., 133 (1997), 203-223.doi: 10.1006/jdeq.1996.3206.

    [15]

    N. N. Nefedov and K. Sakamoto, Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity, Hiroshima Math. J., 33 (2003), 391-432.

    [16]

    M. del Pino, M. Kowalczyk and J. Wei, Resonance and interior layers in an inhomogeneous phase transition model, SIAM J. Math. Anal., 38 (2006/07), 1542-1564.doi: 10.1137/060649574.

    [17]

    K. Sakamoto, Construction and stability analysis of transition layer solutions in reaction-diffusion systems, Tohoku Math. J. (2), 42 (1990), 17-44.doi: 10.2748/tmj/1178227692.

    [18]

    D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1971/72), 979-1000.doi: 10.1512/iumj.1972.21.21079.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(128) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return