April  2012, 32(4): 1391-1420. doi: 10.3934/dcds.2012.32.1391

Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains

1. 

Center for Partial Differential Equations, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China

2. 

Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477

Received  October 2010 Revised  August 2011 Published  October 2011

In this paper, we study a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains. By upper and lower solution method, we obtain a sufficient condition for a hypersurface $S$ in the domain $\Omega$ to support stable transition layers, and a necessary condition for $S$ in $\Omega$ to support transition layers, not necessarily stable. In addition, sharp estimates on depths of transition layers have also been derived.
Citation: Fang Li, Kimie Nakashima. Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1391-1420. doi: 10.3934/dcds.2012.32.1391
References:
[1]

P. Fife, "Dynamics of Internal Layers and Diffusive Interfaces,", CBMS-NSF Regional Conference Series in Applied Mathematics, 53 (1988).

[2]

P. Faĭf and U. Grinli, Interior transition layers for elliptic boundary value problems with a small parameter,, Uspehi Mat. Nauk, 29 (1974), 103.

[3]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125.

[4]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, in, (1981), 369.

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).

[6]

J. Hale and K. Sakamoto, Existence and stability of transition layers,, Japan J. Appl. Math., 5 (1988), 367. doi: 10.1007/BF03167908.

[7]

R. V. Kohn and P. Sternberg, Local minimisers and singular perturbations,, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 69.

[8]

F. Li, K. Nakashima and W.-M. Ni, Stability from the point of view of diffusion, relaxation and spatial inhomogeneity,, Discrete Contin. Dyn. Syst., 20 (2008), 259.

[9]

A. Malchiodi, W.-M. Ni and J. Wei, Boundary-clustered interfaces for the Allen-Cahn equation,, Pacific J. Math., 229 (2007), 447. doi: 10.2140/pjm.2007.229.447.

[10]

H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations,, Publ. Res. Inst. Math. Sci., 15 (1979), 401. doi: 10.2977/prims/1195188180.

[11]

H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1984), 645.

[12]

K. Nakashima, Stable transition layers in a balanced bistable equation,, Diff. Integral Eqns., 13 (2000), 1025.

[13]

K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation,, J. Diff. Eqns., 191 (2003), 234. doi: 10.1016/S0022-0396(02)00181-X.

[14]

A. S. do Nascimento, Local minimizers induced by spatial inhomogeneity with inner transition layer,, J. Diff. Eqns., 133 (1997), 203. doi: 10.1006/jdeq.1996.3206.

[15]

N. N. Nefedov and K. Sakamoto, Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity,, Hiroshima Math. J., 33 (2003), 391.

[16]

M. del Pino, M. Kowalczyk and J. Wei, Resonance and interior layers in an inhomogeneous phase transition model,, SIAM J. Math. Anal., 38 (2006), 1542. doi: 10.1137/060649574.

[17]

K. Sakamoto, Construction and stability analysis of transition layer solutions in reaction-diffusion systems,, Tohoku Math. J. (2), 42 (1990), 17. doi: 10.2748/tmj/1178227692.

[18]

D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems,, Indiana Univ. Math. J., 21 (1971), 979. doi: 10.1512/iumj.1972.21.21079.

show all references

References:
[1]

P. Fife, "Dynamics of Internal Layers and Diffusive Interfaces,", CBMS-NSF Regional Conference Series in Applied Mathematics, 53 (1988).

[2]

P. Faĭf and U. Grinli, Interior transition layers for elliptic boundary value problems with a small parameter,, Uspehi Mat. Nauk, 29 (1974), 103.

[3]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125.

[4]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, in, (1981), 369.

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).

[6]

J. Hale and K. Sakamoto, Existence and stability of transition layers,, Japan J. Appl. Math., 5 (1988), 367. doi: 10.1007/BF03167908.

[7]

R. V. Kohn and P. Sternberg, Local minimisers and singular perturbations,, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 69.

[8]

F. Li, K. Nakashima and W.-M. Ni, Stability from the point of view of diffusion, relaxation and spatial inhomogeneity,, Discrete Contin. Dyn. Syst., 20 (2008), 259.

[9]

A. Malchiodi, W.-M. Ni and J. Wei, Boundary-clustered interfaces for the Allen-Cahn equation,, Pacific J. Math., 229 (2007), 447. doi: 10.2140/pjm.2007.229.447.

[10]

H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations,, Publ. Res. Inst. Math. Sci., 15 (1979), 401. doi: 10.2977/prims/1195188180.

[11]

H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1984), 645.

[12]

K. Nakashima, Stable transition layers in a balanced bistable equation,, Diff. Integral Eqns., 13 (2000), 1025.

[13]

K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation,, J. Diff. Eqns., 191 (2003), 234. doi: 10.1016/S0022-0396(02)00181-X.

[14]

A. S. do Nascimento, Local minimizers induced by spatial inhomogeneity with inner transition layer,, J. Diff. Eqns., 133 (1997), 203. doi: 10.1006/jdeq.1996.3206.

[15]

N. N. Nefedov and K. Sakamoto, Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity,, Hiroshima Math. J., 33 (2003), 391.

[16]

M. del Pino, M. Kowalczyk and J. Wei, Resonance and interior layers in an inhomogeneous phase transition model,, SIAM J. Math. Anal., 38 (2006), 1542. doi: 10.1137/060649574.

[17]

K. Sakamoto, Construction and stability analysis of transition layer solutions in reaction-diffusion systems,, Tohoku Math. J. (2), 42 (1990), 17. doi: 10.2748/tmj/1178227692.

[18]

D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems,, Indiana Univ. Math. J., 21 (1971), 979. doi: 10.1512/iumj.1972.21.21079.

[1]

Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407

[2]

Jun Yang, Xiaolin Yang. Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains. Communications on Pure & Applied Analysis, 2013, 12 (1) : 303-340. doi: 10.3934/cpaa.2013.12.303

[3]

Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319

[4]

Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703

[5]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[6]

Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015

[7]

Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679

[8]

Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure & Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577

[9]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

[10]

Eleonora Cinti. Saddle-shaped solutions for the fractional Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 441-463. doi: 10.3934/dcdss.2018024

[11]

Charles-Edouard Bréhier, Ludovic Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-22. doi: 10.3934/dcdsb.2019077

[12]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[13]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[14]

Takeshi Ohtsuka, Ken Shirakawa, Noriaki Yamazaki. Optimal control problem for Allen-Cahn type equation associated with total variation energy. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 159-181. doi: 10.3934/dcdss.2012.5.159

[15]

Isabeau Birindelli, Enrico Valdinoci. On the Allen-Cahn equation in the Grushin plane: A monotone entire solution that is not one-dimensional. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 823-838. doi: 10.3934/dcds.2011.29.823

[16]

Xufeng Xiao, Xinlong Feng, Jinyun Yuan. The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2857-2877. doi: 10.3934/dcdsb.2017154

[17]

Giorgio Fusco. Layered solutions to the vector Allen-Cahn equation in $\mathbb{R}^2$. Minimizers and heteroclinic connections. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1807-1841. doi: 10.3934/cpaa.2017088

[18]

Xiaofeng Yang. Error analysis of stabilized semi-implicit method of Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1057-1070. doi: 10.3934/dcdsb.2009.11.1057

[19]

Giorgio Fusco, Francesco Leonetti, Cristina Pignotti. On the asymptotic behavior of symmetric solutions of the Allen-Cahn equation in unbounded domains in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 725-742. doi: 10.3934/dcds.2017030

[20]

Grégory Faye. Multidimensional stability of planar traveling waves for the scalar nonlocal Allen-Cahn equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2473-2496. doi: 10.3934/dcds.2016.36.2473

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]