• Previous Article
    Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems
  • DCDS Home
  • This Issue
  • Next Article
    Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains
April  2012, 32(4): 1421-1434. doi: 10.3934/dcds.2012.32.1421

Dominated splitting and Pesin's entropy formula

1. 

LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China

2. 

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Received  May 2010 Revised  September 2011 Published  October 2011

Let $M$ be a compact manifold and $f:\,M\rightarrow M$ be a $C^1$ diffeomorphism on $M$. If $\mu$ is an $f$-invariant probability measure which is absolutely continuous relative to Lebesgue measure and for $\mu$ $a.\,\,e.\,\,x\in M,$ there is a dominated splitting $T_{orb(x)}M=E\oplus F$ on its orbit $orb(x)$, then we give an estimation through Lyapunov characteristic exponents from below in Pesin's entropy formula, i.e., the metric entropy $h_\mu(f)$ satisfies $$h_{\mu}(f)\geq\int \chi(x)d\mu,$$ where $\chi(x)=\sum_{i=1}^{dim\,F(x)}\lambda_i(x)$ and $\lambda_1(x)\geq\lambda_2(x)\geq\cdots\geq\lambda_{dim\,M}(x)$ are the Lyapunov exponents at $x$ with respect to $\mu.$
    Consequently, we obtain that Pesin's entropy formula always holds for (1) volume-preserving Anosov diffeomorphisms, (2) volume-preserving partially hyperbolic diffeomorphisms with one-dimensional center bundle, (3) volume-preserving diffeomorphisms far away from homoclinic tangency, and (4) generic volume-preserving diffeomorphisms.
Citation: Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421
References:
[1]

Ch. Bonatti, L. Diaz and M. Viana, "Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective,", Springer-Verlag, (2005). Google Scholar

[2]

L. Barreira and Y. B. Pesin, "Nonuniform Hyperbolicity,", Cambridge Univ. Press, (2007). Google Scholar

[3]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic systems,, Ann. of Math., 161 (2005), 1423. doi: 10.4007/annals.2005.161.1423. Google Scholar

[4]

F. Ledrappier and J. Strelcyn, A proof of the estimation from below in Pesin's entropy formula,, Ergod. Th. and Dynam. Sys., 2 (1982), 203. Google Scholar

[5]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula,, Ann. of Math. (2), 122 (1985), 509. doi: 10.2307/1971328. Google Scholar

[6]

P. Liu, Pesin's entropy formula for endomorphism,, Nagoya Math. J., 150 (1998), 197. Google Scholar

[7]

P. Liu, Entropy formula of Pesin type for noninvertible random dynamical systems,, Math. Z., 230 (1999), 201. doi: 10.1007/PL00004694. Google Scholar

[8]

R. Mañé, A proof of Pesin's formula,, Ergod. Th. and Dynam. Sys., 1 (1981), 95. Google Scholar

[9]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,", Springer-Verlag, (1987). Google Scholar

[10]

V. I. Oseledec, Multiplicative ergodic theorem, Liapunov characteristic numbers for dynamical systems,, translated from Russian, 19 (1968), 197. Google Scholar

[11]

Y. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory,, Russian Math. Surveys, 32 (1977), 55. doi: 10.1070/RM1977v032n04ABEH001639. Google Scholar

[12]

D. Ruelle, An inequality for the entropy of differentiable maps,, Bol. Sox. Bras. Mat, 9 (1978), 83. doi: 10.1007/BF02584795. Google Scholar

[13]

A. Tahzibi, $C^1$-generic Pesin's entropy formula,, C. R. Acad. Sci. Paris, 335 (2002), 1057. Google Scholar

[14]

P. Walters, "An Introduction to Ergodic Theory,", Springer-Verlag, (2001). Google Scholar

[15]

J. Yang, "$C^1$ Dynamics Far from Tangencies,", Ph.D thesis, (). Google Scholar

show all references

References:
[1]

Ch. Bonatti, L. Diaz and M. Viana, "Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective,", Springer-Verlag, (2005). Google Scholar

[2]

L. Barreira and Y. B. Pesin, "Nonuniform Hyperbolicity,", Cambridge Univ. Press, (2007). Google Scholar

[3]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and symplectic systems,, Ann. of Math., 161 (2005), 1423. doi: 10.4007/annals.2005.161.1423. Google Scholar

[4]

F. Ledrappier and J. Strelcyn, A proof of the estimation from below in Pesin's entropy formula,, Ergod. Th. and Dynam. Sys., 2 (1982), 203. Google Scholar

[5]

F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula,, Ann. of Math. (2), 122 (1985), 509. doi: 10.2307/1971328. Google Scholar

[6]

P. Liu, Pesin's entropy formula for endomorphism,, Nagoya Math. J., 150 (1998), 197. Google Scholar

[7]

P. Liu, Entropy formula of Pesin type for noninvertible random dynamical systems,, Math. Z., 230 (1999), 201. doi: 10.1007/PL00004694. Google Scholar

[8]

R. Mañé, A proof of Pesin's formula,, Ergod. Th. and Dynam. Sys., 1 (1981), 95. Google Scholar

[9]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,", Springer-Verlag, (1987). Google Scholar

[10]

V. I. Oseledec, Multiplicative ergodic theorem, Liapunov characteristic numbers for dynamical systems,, translated from Russian, 19 (1968), 197. Google Scholar

[11]

Y. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory,, Russian Math. Surveys, 32 (1977), 55. doi: 10.1070/RM1977v032n04ABEH001639. Google Scholar

[12]

D. Ruelle, An inequality for the entropy of differentiable maps,, Bol. Sox. Bras. Mat, 9 (1978), 83. doi: 10.1007/BF02584795. Google Scholar

[13]

A. Tahzibi, $C^1$-generic Pesin's entropy formula,, C. R. Acad. Sci. Paris, 335 (2002), 1057. Google Scholar

[14]

P. Walters, "An Introduction to Ergodic Theory,", Springer-Verlag, (2001). Google Scholar

[15]

J. Yang, "$C^1$ Dynamics Far from Tangencies,", Ph.D thesis, (). Google Scholar

[1]

Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123

[2]

Xinsheng Wang, Lin Wang, Yujun Zhu. Formula of entropy along unstable foliations for $C^1$ diffeomorphisms with dominated splitting. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2125-2140. doi: 10.3934/dcds.2018087

[3]

Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006

[4]

Xufeng Guo, Gang Liao, Wenxiang Sun, Dawei Yang. On the hybrid control of metric entropy for dominated splittings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5011-5019. doi: 10.3934/dcds.2018219

[5]

Min Qian, Jian-Sheng Xie. Entropy formula for endomorphisms: Relations between entropy, exponents and dimension. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 367-392. doi: 10.3934/dcds.2008.21.367

[6]

Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195

[7]

Alejo Barrio Blaya, Víctor Jiménez López. On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 433-466. doi: 10.3934/dcds.2012.32.433

[8]

Xiaomin Zhou. A formula of conditional entropy and some applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4063-4075. doi: 10.3934/dcds.2016.36.4063

[9]

Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of volume preserving Anosov systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4767-4783. doi: 10.3934/dcds.2017205

[10]

Dong Chen. Positive metric entropy in nondegenerate nearly integrable systems. Journal of Modern Dynamics, 2017, 11: 43-56. doi: 10.3934/jmd.2017003

[11]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[12]

Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 215-234. doi: 10.3934/dcds.2008.22.215

[13]

Jairo Bochi, Michal Rams. The entropy of Lyapunov-optimizing measures of some matrix cocycles. Journal of Modern Dynamics, 2016, 10: 255-286. doi: 10.3934/jmd.2016.10.255

[14]

Dante Carrasco-Olivera, Bernardo San Martín. Robust attractors without dominated splitting on manifolds with boundary. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4555-4563. doi: 10.3934/dcds.2014.34.4555

[15]

Amit Einav. On Villani's conjecture concerning entropy production for the Kac Master equation. Kinetic & Related Models, 2011, 4 (2) : 479-497. doi: 10.3934/krm.2011.4.479

[16]

Michael Brandenbursky, Michał Marcinkowski. Entropy and quasimorphisms. Journal of Modern Dynamics, 2019, 15: 143-163. doi: 10.3934/jmd.2019017

[17]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[18]

Edson de Faria, Pablo Guarino. Real bounds and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1957-1982. doi: 10.3934/dcds.2016.36.1957

[19]

Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107

[20]

Sebastian J. Schreiber. Expansion rates and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 433-438. doi: 10.3934/dcds.1997.3.433

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]