\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems

Abstract / Introduction Related Papers Cited by
  • In [23] Xia introduced a simple dynamical density basis for partially hyperbolic sets of volume preserving diffeomorphisms. We apply the density basis to the study of the topological structure of partially hyperbolic sets. We show that if $\Lambda$ is a strongly partially hyperbolic set with positive volume, then $\Lambda$ contains the global stable manifolds over ${\alpha}(\Lambda^d)$ and the global unstable manifolds over ${\omega}(\Lambda^d)$.
        We give several applications of the dynamical density to partially hyperbolic maps that preserve some $acip$. We show that if $f$ is essentially accessible and $\mu$ is an $acip$ of $f$, then $\text{supp}(\mu)=M$, the map $f$ is transitive, and $\mu$-a.e. $x\in M$ has a dense orbit in $M$. Moreover if $f$ is accessible and center bunched, then either $f$ preserves a smooth measure or there is no $acip$ at all.
    Mathematics Subject Classification: Primary 37D30, 37D10; Secondary 37C40, 37D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Abdenur and M. Viana, Flavors of partial hyperbolicity, preprint, 2008.

    [2]

    J. Alves and V. Pinheiro, Topological structure of (partially) hyperbolic sets with positive volume, Trans. Amer. Math. Soc., 360 (2008), 5551-5569.doi: 10.1090/S0002-9947-08-04484-X.

    [3]

    A. Avila and J. Bochi, A generic $C^1$ map has no absolutely continuous invariant probability measure, Nonlinearity, 19 (2006), 2717-2725.doi: 10.1088/0951-7715/19/11/011.

    [4]

    J. Bochi and M. Viana, Lyapunov exponents: How frequently are dynamical systems hyperbolic?, in "Modern Dynamical Systems and Applications," Cambridge Univ. Press, Cambridge, (2004), 271-297.

    [5]

    R. Bowen, A horseshoe with positive measure, Invent. Math., 29 (1975), 203-204.doi: 10.1007/BF01389849.

    [6]

    R. Bowen, "Equilibrium States and the Ergodic Theory of Axiom A Diffeomorphisms," Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin-New York, 1975.

    [7]

    M. Brin, Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Functional Anal. Appl., 9 (1975), 8-16.doi: 10.1007/BF01078168.

    [8]

    J. Pesin and M. Brin, Partially hyperbolic dynamical systems, (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212.

    [9]

    M. Brin and G. Stuck, "Introduction to Dynamical Systems," Cambridge University Press, Cambridge, 2002.doi: 10.1017/CBO9780511755316.

    [10]

    K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems, Annals of Math. (2), 171 (2010), 451-489.

    [11]

    K. Burns, D. Dolgopyat and Ya. Pesin, Partial hyperbolicity, Lyapunov exponents and stable ergodicity, J. Statist. Phys., 108 (2002), 927-942.doi: 10.1023/A:1019779128351.

    [12]

    D. Dolgopyat and A Wilkinson, Stable accessibility is $C^1$ dense, in "Geometric Methods in Dynamics (II)", Astérisque 287 (2003), 33-60.

    [13]

    T. Fisher, "On the Structure of Hyperbolic Sets," Ph.D thesis, Northwestern University, 2004.

    [14]

    J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc., 158 (1971), 301-308.doi: 10.1090/S0002-9947-1971-0283812-3.

    [15]

    H. Furstenberg, "Recurrence in Ergodic Theory and Combinatorial Number Theory," M. B. Porter Lectures, Princeton University Press, Princeton, N.J., 1981.

    [16]

    N. Gourmelon, Adapted metrics for dominated splittings, Ergod. Th. Dynam. Sys., 27 (2007), 1839-1849.doi: 10.1017/S0143385707000272.

    [17]

    M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977.

    [18]

    V. Niţică and A. Török, An open dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one, Topology, 40 (2001), 259-278.doi: 10.1016/S0040-9383(99)00060-9.

    [19]

    C. Pugh and M. Shub, Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc., 2 (2000), 1-52.doi: 10.1007/s100970050013.

    [20]

    C. Robinson and L. S. Young, Nonabsolutely continuous foliations for an Anosov diffeomorphism, Invent. Math., 61 (1980), 159-176.doi: 10.1007/BF01390119.

    [21]

    F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, A survey of partially hyperbolic dynamics, in "Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow," 35-87, Fields Inst. Commun., 51, Amer. Math. Soc., 2007.

    [22]

    A. WilkinsonThe cohomological equation for partially hyperbolic diffeomorphisms, arXiv:0809.4862.

    [23]

    Z. Xia, Hyperbolic invariant sets with positive measures, Discrete Contin. Dyn. Syst., 15 (2006), 811-818.doi: 10.3934/dcds.2006.15.811.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(81) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return