May  2012, 32(5): 1449-1463. doi: 10.3934/dcds.2012.32.1449

Dynamic growth estimates of maximum vorticity for 3D incompressible Euler equations and the SQG model

1. 

Caltech, Applied and Comput. Math, 9-94, Pasadena, CA 91125, United States, United States

Received  March 2011 Revised  May 2011 Published  January 2012

By performing estimates on the integral of the absolute value of vorticity along a local vortex line segment, we establish a relatively sharp dynamic growth estimate of maximum vorticity under some assumptions on the local geometric regularity of the vorticity vector. Our analysis applies to both the 3D incompressible Euler equations and the surface quasi-geostrophic model (SQG). As an application of our vorticity growth estimate, we apply our result to the 3D Euler equation with the two anti-parallel vortex tubes initial data considered by Hou-Li [12]. Under some additional assumption on the vorticity field, which seems to be consistent with the computational results of [12], we show that the maximum vorticity can not grow faster than double exponential in time. Our analysis extends the earlier results by Cordoba-Fefferman [6, 7] and Deng-Hou-Yu [8, 9].
Citation: Thomas Y. Hou, Zuoqiang Shi. Dynamic growth estimates of maximum vorticity for 3D incompressible Euler equations and the SQG model. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1449-1463. doi: 10.3934/dcds.2012.32.1449
References:
[1]

J. T. Beale, T. Kato and A. J. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Comm. Math. Phys., 94 (1984), 61. doi: 10.1007/BF01212349. Google Scholar

[2]

P. Constantin, C. Fefferman and A. Majda, Geometric constraints on potentially singular solutions for the 3-D Euler equation,, Commun. PDE, 21 (1996), 559. Google Scholar

[3]

P. Constantin, A. J. Majda and E. G. Tabak, Singular front formation in a model for quasigeostrophic flow,, Phys. Fluids, 6 (1994), 9. doi: 10.1063/1.868050. Google Scholar

[4]

P. Constantin, Q. Nie and N. Schörghofer, Nonsingular surface quasi- geostrophic flow,, Phys. Lett. A, 241 (1998), 168. doi: 10.1016/S0375-9601(98)00108-X. Google Scholar

[5]

D. Cordoba, Nonexistence of simple hyperbolic bolw-up for the quasi-geostrophic equation,, Ann. of Math. (2), 148 (1998), 1135. doi: 10.2307/121037. Google Scholar

[6]

D. Cordoba and C. Fefferman, On the collapse of tubes carried by 3D incompressible flows,, Commun. Math. Phys., 222 (2001), 293. doi: 10.1007/s002200100502. Google Scholar

[7]

D. Cordoba and C. Fefferman, Growth of solutions for QG and 2D Euler equations,, J. Amer. Math. Soc., 15 (2002), 665. doi: 10.1090/S0894-0347-02-00394-6. Google Scholar

[8]

J. Deng, T. Y. Hou and X. Yu, Geometric properties and nonblowup of 3D incompressible Euler flow,, Comm. PDE, 30 (2005), 225. doi: 10.1081/PDE-200044488. Google Scholar

[9]

J. Deng, T. Y. Hou and X. Yu, Improved geometric conditions for non-blowup of the 3D incompressible Euler equation,, Comm. PDE, 31 (2006), 293. doi: 10.1080/03605300500358152. Google Scholar

[10]

J. Deng, T. Y. Hou, R. Li and X. Yu, Level set dynamics and non-blowup of the 2D quasi-geostrophic equation,, Methods and Applications of Analysis, 13 (2006), 157. Google Scholar

[11]

T. Y. Hou, Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and Navier-Stokes equations,, Acta Numerica, 18 (2009), 277. doi: 10.1017/S0962492906420018. Google Scholar

[12]

T. Y. Hou and R. Li, Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations,, J. Nonlinear Science, 16 (2006), 639. doi: 10.1007/s00332-006-0800-3. Google Scholar

[13]

T. Y. Hou and R. Li, Blowup or no blowup? The interplay between theory and numerics,, Phisica D, 237 (2008), 1937. doi: 10.1016/j.physd.2008.01.018. Google Scholar

[14]

R. M. Kerr, Evidence for a singularity of the three-dimensional, incompressible Euler equations,, Phys. Fluids A, 5 (1993), 1725. doi: 10.1063/1.858849. Google Scholar

[15]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, 27 (2002). Google Scholar

[16]

K. Ohkitani and M. Yamada, Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow,, Phys. Fluids, 9 (1997), 876. Google Scholar

show all references

References:
[1]

J. T. Beale, T. Kato and A. J. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Comm. Math. Phys., 94 (1984), 61. doi: 10.1007/BF01212349. Google Scholar

[2]

P. Constantin, C. Fefferman and A. Majda, Geometric constraints on potentially singular solutions for the 3-D Euler equation,, Commun. PDE, 21 (1996), 559. Google Scholar

[3]

P. Constantin, A. J. Majda and E. G. Tabak, Singular front formation in a model for quasigeostrophic flow,, Phys. Fluids, 6 (1994), 9. doi: 10.1063/1.868050. Google Scholar

[4]

P. Constantin, Q. Nie and N. Schörghofer, Nonsingular surface quasi- geostrophic flow,, Phys. Lett. A, 241 (1998), 168. doi: 10.1016/S0375-9601(98)00108-X. Google Scholar

[5]

D. Cordoba, Nonexistence of simple hyperbolic bolw-up for the quasi-geostrophic equation,, Ann. of Math. (2), 148 (1998), 1135. doi: 10.2307/121037. Google Scholar

[6]

D. Cordoba and C. Fefferman, On the collapse of tubes carried by 3D incompressible flows,, Commun. Math. Phys., 222 (2001), 293. doi: 10.1007/s002200100502. Google Scholar

[7]

D. Cordoba and C. Fefferman, Growth of solutions for QG and 2D Euler equations,, J. Amer. Math. Soc., 15 (2002), 665. doi: 10.1090/S0894-0347-02-00394-6. Google Scholar

[8]

J. Deng, T. Y. Hou and X. Yu, Geometric properties and nonblowup of 3D incompressible Euler flow,, Comm. PDE, 30 (2005), 225. doi: 10.1081/PDE-200044488. Google Scholar

[9]

J. Deng, T. Y. Hou and X. Yu, Improved geometric conditions for non-blowup of the 3D incompressible Euler equation,, Comm. PDE, 31 (2006), 293. doi: 10.1080/03605300500358152. Google Scholar

[10]

J. Deng, T. Y. Hou, R. Li and X. Yu, Level set dynamics and non-blowup of the 2D quasi-geostrophic equation,, Methods and Applications of Analysis, 13 (2006), 157. Google Scholar

[11]

T. Y. Hou, Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and Navier-Stokes equations,, Acta Numerica, 18 (2009), 277. doi: 10.1017/S0962492906420018. Google Scholar

[12]

T. Y. Hou and R. Li, Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations,, J. Nonlinear Science, 16 (2006), 639. doi: 10.1007/s00332-006-0800-3. Google Scholar

[13]

T. Y. Hou and R. Li, Blowup or no blowup? The interplay between theory and numerics,, Phisica D, 237 (2008), 1937. doi: 10.1016/j.physd.2008.01.018. Google Scholar

[14]

R. M. Kerr, Evidence for a singularity of the three-dimensional, incompressible Euler equations,, Phys. Fluids A, 5 (1993), 1725. doi: 10.1063/1.858849. Google Scholar

[15]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, 27 (2002). Google Scholar

[16]

K. Ohkitani and M. Yamada, Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow,, Phys. Fluids, 9 (1997), 876. Google Scholar

[1]

Ming Lu, Yi Du, Zheng-An Yao. Blow-up phenomena for the 3D compressible MHD equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1835-1855. doi: 10.3934/dcds.2012.32.1835

[2]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[3]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[4]

Anthony Suen. Corrigendum: A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1387-1390. doi: 10.3934/dcds.2015.35.1387

[5]

Anthony Suen. A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3791-3805. doi: 10.3934/dcds.2013.33.3791

[6]

Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11

[7]

Franco Flandoli, Dejun Luo. Euler-Lagrangian approach to 3D stochastic Euler equations. Journal of Geometric Mechanics, 2019, 11 (2) : 153-165. doi: 10.3934/jgm.2019008

[8]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

[9]

John A. D. Appleby, Denis D. Patterson. Blow-up and superexponential growth in superlinear Volterra equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3993-4017. doi: 10.3934/dcds.2018174

[10]

Michael Röckner, Rongchan Zhu, Xiangchan Zhu. A remark on global solutions to random 3D vorticity equations for small initial data. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4021-4030. doi: 10.3934/dcdsb.2019048

[11]

Ning Ju. The finite dimensional global attractor for the 3D viscous Primitive Equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7001-7020. doi: 10.3934/dcds.2016104

[12]

Dongho Chae. On the blow-up problem for the Euler equations and the Liouville type results in the fluid equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1139-1150. doi: 10.3934/dcdss.2013.6.1139

[13]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[14]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[15]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[16]

Olivier Druet, Emmanuel Hebey and Frederic Robert. A $C^0$-theory for the blow-up of second order elliptic equations of critical Sobolev growth. Electronic Research Announcements, 2003, 9: 19-25.

[17]

Shiming Li, Yongsheng Li, Wei Yan. A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1899-1912. doi: 10.3934/dcdss.2016077

[18]

Claude Bardos, E. S. Titi. Loss of smoothness and energy conserving rough weak solutions for the $3d$ Euler equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 185-197. doi: 10.3934/dcdss.2010.3.185

[19]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations & Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

[20]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]