\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dimensional reduction for supremal functionals

Abstract Related Papers Cited by
  • A 3D-2D dimensional reduction analysis for supremal functionals is performed in the realm of $\Gamma^*$-convergence. We show that the limit functional still admits a supremal representation, and we provide a precise identification of its density in some particular cases. Our results rely on an abstract representation theorem for the $\Gamma^*$-limit of a family of supremal functionals.
    Mathematics Subject Classification: 49J45, 74K99, 74Q99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Acerbi, G. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string, J. Elasticity, 25 (1991), 137-148.doi: 10.1007/BF00042462.

    [2]

    E. Acerbi, G. Buttazzo and F. Prinari, The class of functionals which can be represented by a supremum, J. Convex Anal., 9 (2002), 225-236.

    [3]

    O. Alvarez and E. N. Barron, Homogenization in $L^\infty$, J. Diff. Eq., 183 (2002), 132-164.

    [4]

    G. Aronsson, Minimization problems for the functional sup$_x F(x,f(x),f'(x))$, Ark. Mat., 6 (1965), 33-53.doi: 10.1007/BF02591326.

    [5]

    G. Aronsson, Minimization problems for the functional sup$_x F(x,f(x),f'(x))$, II, Ark. Mat., 6 (1966), 409-431.

    [6]

    G. Aronsson, Minimization problems for the functional sup$_xF(x,f(x),f'(x))$, III, Ark. Mat., 7 (1969), 509-512.

    [7]

    G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967), 551-561.doi: 10.1007/BF02591928.

    [8]

    J.-F. Babadjian and M. Baía, 3D-2D analysis of a thin film with periodic microstructure, Proc. Roy. Soc. Ed. Sect. A, 136 (2006), 223-243.doi: 10.1017/S0308210500004534.

    [9]

    J.-F. Babadjian and M. Baía, Multiscale nonconvex relaxation and application to thin films, Asympt. Anal., 48 (2006), 173-218.

    [10]

    J.-F. Babadjian and G. A. Francfort, Spatial heterogeneity in 3D-2D dimensional reduction, ESAIM Cont. Optim. Calc. Var., 11 (2005), 139-160.doi: 10.1051/cocv:2004031.

    [11]

    J.-F. Babadjian, E. Zappale and H. Zorgati, Dimensional reduction for energies with linear growth involving the bending moment, J. Math. Pures Appl. (9), 90 (2008), 520-549.doi: 10.1016/j.matpur.2008.07.003.

    [12]

    M Baía and I. Fonseca, The limit behavior of a family of variational multiscale problems, Indiana Univ. Math. J., 56 (2007), 1-50.doi: 10.1512/iumj.2007.56.2869.

    [13]

    E. N. Barron, P. Cardaliaguet and R. R. Jensen, Radon-Nikodym theorem in $L^\infty$, Appl. Math. Optim., 42 (2000), 103-126.doi: 10.1007/s002450010006.

    [14]

    E. N. Barron, R. R. Jensen and C. Y. Wang, Lower semicontinuity of $L^\infty$ functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 495-517.

    [15]

    E. N. Barron, R. R. Jensen and C. Y. Wang, The Euler equation and absolute minimizers of $L^\infty$ functionals, Arch. Rational Mech. Anal., 157 (2001), 225-283.

    [16]

    E. N. Barron and W. Liu, Calculus of variation in $L^\infty$, Appl. Math. Optim., 35 (1997), 237-263.doi: 10.1007/s002459900047.

    [17]

    A. Braides, "$\Gamma$-Convergence for Beginners," Oxford Lecture Series in Mathematics and its Applications, 22, Oxford University Press, Oxford, 2002.

    [18]

    A. Braides and A. Defranceschi, "Homogenization of Multiple Integrals," Oxford Lectures Series in Mathematics and its Applications, 12, The Clarendon Press, Oxford University Press, New York, 1998.

    [19]

    A. Braides and I. Fonseca, Brittle thin films, Appl. Math. Optim., 44 (2001), 299-323.doi: 10.1007/s00245-001-0022-x.

    [20]

    A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., 49 (2000), 1367-1404.

    [21]

    A. Briani and F. Prinari, A representation result for $\Gamma$-limit of supremal functionals, J. Nonlinear Convex Anal., 4 (2003), 245-268.

    [22]

    A. Briani, A. Garroni and F. Prinari, Homogenization of $L^\infty$ functionals, Math. Models and Methods in Applied Sciences, 14 (2004), 1761-1784.doi: 10.1142/S0218202504003817.

    [23]

    G. Buttazzo and G. Dal Maso, Integral representation and relaxation of local functionals, Nonlinear Anal., 9 (1985), 515-532.doi: 10.1016/0362-546X(85)90038-0.

    [24]

    G. Buttazzo, "Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations," Pitman Research Notes in Mathematics Series, 207, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.

    [25]

    P. Cardaliaguet and F. Prinari, Supremal representation of $L^\infty$ functionals, App. Math. Optim., 52 (2005), 129-141.doi: 10.1007/s00245-005-0821-6.

    [26]
    [27]

    T. Champion, L. De Pascale and F. Prinari, Semicontinuity and absolute minimizers for supremal functionals, ESAIM Control Optim. Calc. Var., 10 (2004), 14-27.doi: 10.1051/cocv:2003036.

    [28]

    G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993.

    [29]

    G. Dal Maso and P. Longo, $\Gamma$-limits of obstacles, Ann. Mat. Pura Appl. (4), 128 (1981), 1-50.doi: 10.1007/BF01789466.

    [30]

    G. Dal Maso and L. Modica, A general theory of variational functionals, in "Topics in Functional Analysis," 1980-81, Quaderni, Scuola Norm. Sup. Pisa, Pisa, (1981), 149-221.

    [31]

    E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850.

    [32]

    A. Garroni, M. Ponsiglione and F. Prinari, Positively 1-homogeneous supremal functionals to difference quotients: Relaxation and $\Gamma$-convergence, Calc. Var. Partial Differential Equations, 27 (2006), 397-420.

    [33]

    A. Garroni, V. Nesi and M. Ponsiglione, Dielectric breakdown: Optimal bounds, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2317-2335.doi: 10.1098/rspa.2001.0803.

    [34]

    H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. (9), 74 (1995), 549-578.

    [35]

    F. Prinari, Relaxation and $\Gamma$-convergence of supremal functionals, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 9 (2006), 101-132.

    [36]

    F. Prinari, Semicontinuity and relaxation of $L^\infty$-functionals, Adv. Calc. Var., 2 (2009), 43-71.doi: 10.1515/ACV.2009.003.

    [37]

    J. Serrin, On the definition and the properties of certain variational integrals, Trans. Amer. Math. Soc., 101 (1961), 139-167.doi: 10.1090/S0002-9947-1961-0138018-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(140) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return