May  2012, 32(5): 1503-1535. doi: 10.3934/dcds.2012.32.1503

Dimensional reduction for supremal functionals

1. 

Université Pierre et Marie Curie – Paris 6, CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, 75005 Paris, France

2. 

Dipartimento di Matematica, Università di Ferrara, Via Machiavelli, 35, 44100, Ferrara, Italy

3. 

DIEII, Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano, Italy

Received  November 2010 Revised  May 2011 Published  January 2012

A 3D-2D dimensional reduction analysis for supremal functionals is performed in the realm of $\Gamma^*$-convergence. We show that the limit functional still admits a supremal representation, and we provide a precise identification of its density in some particular cases. Our results rely on an abstract representation theorem for the $\Gamma^*$-limit of a family of supremal functionals.
Citation: Jean-François Babadjian, Francesca Prinari, Elvira Zappale. Dimensional reduction for supremal functionals. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1503-1535. doi: 10.3934/dcds.2012.32.1503
References:
[1]

E. Acerbi, G. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string,, J. Elasticity, 25 (1991), 137.  doi: 10.1007/BF00042462.  Google Scholar

[2]

E. Acerbi, G. Buttazzo and F. Prinari, The class of functionals which can be represented by a supremum,, J. Convex Anal., 9 (2002), 225.   Google Scholar

[3]

O. Alvarez and E. N. Barron, Homogenization in $L^\infty$,, J. Diff. Eq., 183 (2002), 132.   Google Scholar

[4]

G. Aronsson, Minimization problems for the functional sup$_x F(x,f(x),f'(x))$,, Ark. Mat., 6 (1965), 33.  doi: 10.1007/BF02591326.  Google Scholar

[5]

G. Aronsson, Minimization problems for the functional sup$_x F(x,f(x),f'(x))$, II,, Ark. Mat., 6 (1966), 409.   Google Scholar

[6]

G. Aronsson, Minimization problems for the functional sup$_xF(x,f(x),f'(x))$, III,, Ark. Mat., 7 (1969), 509.   Google Scholar

[7]

G. Aronsson, Extension of functions satisfying Lipschitz conditions,, Ark. Mat., 6 (1967), 551.  doi: 10.1007/BF02591928.  Google Scholar

[8]

J.-F. Babadjian and M. Baía, 3D-2D analysis of a thin film with periodic microstructure,, Proc. Roy. Soc. Ed. Sect. A, 136 (2006), 223.  doi: 10.1017/S0308210500004534.  Google Scholar

[9]

J.-F. Babadjian and M. Baía, Multiscale nonconvex relaxation and application to thin films,, Asympt. Anal., 48 (2006), 173.   Google Scholar

[10]

J.-F. Babadjian and G. A. Francfort, Spatial heterogeneity in 3D-2D dimensional reduction,, ESAIM Cont. Optim. Calc. Var., 11 (2005), 139.  doi: 10.1051/cocv:2004031.  Google Scholar

[11]

J.-F. Babadjian, E. Zappale and H. Zorgati, Dimensional reduction for energies with linear growth involving the bending moment,, J. Math. Pures Appl. (9), 90 (2008), 520.  doi: 10.1016/j.matpur.2008.07.003.  Google Scholar

[12]

M Baía and I. Fonseca, The limit behavior of a family of variational multiscale problems,, Indiana Univ. Math. J., 56 (2007), 1.  doi: 10.1512/iumj.2007.56.2869.  Google Scholar

[13]

E. N. Barron, P. Cardaliaguet and R. R. Jensen, Radon-Nikodym theorem in $L^\infty$,, Appl. Math. Optim., 42 (2000), 103.  doi: 10.1007/s002450010006.  Google Scholar

[14]

E. N. Barron, R. R. Jensen and C. Y. Wang, Lower semicontinuity of $L^\infty$ functionals,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 495.   Google Scholar

[15]

E. N. Barron, R. R. Jensen and C. Y. Wang, The Euler equation and absolute minimizers of $L^\infty$ functionals,, Arch. Rational Mech. Anal., 157 (2001), 225.   Google Scholar

[16]

E. N. Barron and W. Liu, Calculus of variation in $L^\infty$,, Appl. Math. Optim., 35 (1997), 237.  doi: 10.1007/s002459900047.  Google Scholar

[17]

A. Braides, "$\Gamma$-Convergence for Beginners,", Oxford Lecture Series in Mathematics and its Applications, 22 (2002).   Google Scholar

[18]

A. Braides and A. Defranceschi, "Homogenization of Multiple Integrals,", Oxford Lectures Series in Mathematics and its Applications, 12 (1998).   Google Scholar

[19]

A. Braides and I. Fonseca, Brittle thin films,, Appl. Math. Optim., 44 (2001), 299.  doi: 10.1007/s00245-001-0022-x.  Google Scholar

[20]

A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films,, Indiana Univ. Math. J., 49 (2000), 1367.   Google Scholar

[21]

A. Briani and F. Prinari, A representation result for $\Gamma$-limit of supremal functionals,, J. Nonlinear Convex Anal., 4 (2003), 245.   Google Scholar

[22]

A. Briani, A. Garroni and F. Prinari, Homogenization of $L^\infty$ functionals,, Math. Models and Methods in Applied Sciences, 14 (2004), 1761.  doi: 10.1142/S0218202504003817.  Google Scholar

[23]

G. Buttazzo and G. Dal Maso, Integral representation and relaxation of local functionals,, Nonlinear Anal., 9 (1985), 515.  doi: 10.1016/0362-546X(85)90038-0.  Google Scholar

[24]

G. Buttazzo, "Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations,", Pitman Research Notes in Mathematics Series, 207 (1989).   Google Scholar

[25]

P. Cardaliaguet and F. Prinari, Supremal representation of $L^\infty$ functionals,, App. Math. Optim., 52 (2005), 129.  doi: 10.1007/s00245-005-0821-6.  Google Scholar

[26]

, P. Cardaliaguet and F. Prinari,, Unpublished., ().   Google Scholar

[27]

T. Champion, L. De Pascale and F. Prinari, Semicontinuity and absolute minimizers for supremal functionals,, ESAIM Control Optim. Calc. Var., 10 (2004), 14.  doi: 10.1051/cocv:2003036.  Google Scholar

[28]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Progress in Nonlinear Differential Equations and their Applications, 8 (1993).   Google Scholar

[29]

G. Dal Maso and P. Longo, $\Gamma$-limits of obstacles,, Ann. Mat. Pura Appl. (4), 128 (1981), 1.  doi: 10.1007/BF01789466.  Google Scholar

[30]

G. Dal Maso and L. Modica, A general theory of variational functionals,, in, (1981), 1980.   Google Scholar

[31]

E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842.   Google Scholar

[32]

A. Garroni, M. Ponsiglione and F. Prinari, Positively 1-homogeneous supremal functionals to difference quotients: Relaxation and $\Gamma$-convergence,, Calc. Var. Partial Differential Equations, 27 (2006), 397.   Google Scholar

[33]

A. Garroni, V. Nesi and M. Ponsiglione, Dielectric breakdown: Optimal bounds,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2317.  doi: 10.1098/rspa.2001.0803.  Google Scholar

[34]

H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity,, J. Math. Pures Appl. (9), 74 (1995), 549.   Google Scholar

[35]

F. Prinari, Relaxation and $\Gamma$-convergence of supremal functionals,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 9 (2006), 101.   Google Scholar

[36]

F. Prinari, Semicontinuity and relaxation of $L^\infty$-functionals,, Adv. Calc. Var., 2 (2009), 43.  doi: 10.1515/ACV.2009.003.  Google Scholar

[37]

J. Serrin, On the definition and the properties of certain variational integrals,, Trans. Amer. Math. Soc., 101 (1961), 139.  doi: 10.1090/S0002-9947-1961-0138018-9.  Google Scholar

show all references

References:
[1]

E. Acerbi, G. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string,, J. Elasticity, 25 (1991), 137.  doi: 10.1007/BF00042462.  Google Scholar

[2]

E. Acerbi, G. Buttazzo and F. Prinari, The class of functionals which can be represented by a supremum,, J. Convex Anal., 9 (2002), 225.   Google Scholar

[3]

O. Alvarez and E. N. Barron, Homogenization in $L^\infty$,, J. Diff. Eq., 183 (2002), 132.   Google Scholar

[4]

G. Aronsson, Minimization problems for the functional sup$_x F(x,f(x),f'(x))$,, Ark. Mat., 6 (1965), 33.  doi: 10.1007/BF02591326.  Google Scholar

[5]

G. Aronsson, Minimization problems for the functional sup$_x F(x,f(x),f'(x))$, II,, Ark. Mat., 6 (1966), 409.   Google Scholar

[6]

G. Aronsson, Minimization problems for the functional sup$_xF(x,f(x),f'(x))$, III,, Ark. Mat., 7 (1969), 509.   Google Scholar

[7]

G. Aronsson, Extension of functions satisfying Lipschitz conditions,, Ark. Mat., 6 (1967), 551.  doi: 10.1007/BF02591928.  Google Scholar

[8]

J.-F. Babadjian and M. Baía, 3D-2D analysis of a thin film with periodic microstructure,, Proc. Roy. Soc. Ed. Sect. A, 136 (2006), 223.  doi: 10.1017/S0308210500004534.  Google Scholar

[9]

J.-F. Babadjian and M. Baía, Multiscale nonconvex relaxation and application to thin films,, Asympt. Anal., 48 (2006), 173.   Google Scholar

[10]

J.-F. Babadjian and G. A. Francfort, Spatial heterogeneity in 3D-2D dimensional reduction,, ESAIM Cont. Optim. Calc. Var., 11 (2005), 139.  doi: 10.1051/cocv:2004031.  Google Scholar

[11]

J.-F. Babadjian, E. Zappale and H. Zorgati, Dimensional reduction for energies with linear growth involving the bending moment,, J. Math. Pures Appl. (9), 90 (2008), 520.  doi: 10.1016/j.matpur.2008.07.003.  Google Scholar

[12]

M Baía and I. Fonseca, The limit behavior of a family of variational multiscale problems,, Indiana Univ. Math. J., 56 (2007), 1.  doi: 10.1512/iumj.2007.56.2869.  Google Scholar

[13]

E. N. Barron, P. Cardaliaguet and R. R. Jensen, Radon-Nikodym theorem in $L^\infty$,, Appl. Math. Optim., 42 (2000), 103.  doi: 10.1007/s002450010006.  Google Scholar

[14]

E. N. Barron, R. R. Jensen and C. Y. Wang, Lower semicontinuity of $L^\infty$ functionals,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 495.   Google Scholar

[15]

E. N. Barron, R. R. Jensen and C. Y. Wang, The Euler equation and absolute minimizers of $L^\infty$ functionals,, Arch. Rational Mech. Anal., 157 (2001), 225.   Google Scholar

[16]

E. N. Barron and W. Liu, Calculus of variation in $L^\infty$,, Appl. Math. Optim., 35 (1997), 237.  doi: 10.1007/s002459900047.  Google Scholar

[17]

A. Braides, "$\Gamma$-Convergence for Beginners,", Oxford Lecture Series in Mathematics and its Applications, 22 (2002).   Google Scholar

[18]

A. Braides and A. Defranceschi, "Homogenization of Multiple Integrals,", Oxford Lectures Series in Mathematics and its Applications, 12 (1998).   Google Scholar

[19]

A. Braides and I. Fonseca, Brittle thin films,, Appl. Math. Optim., 44 (2001), 299.  doi: 10.1007/s00245-001-0022-x.  Google Scholar

[20]

A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films,, Indiana Univ. Math. J., 49 (2000), 1367.   Google Scholar

[21]

A. Briani and F. Prinari, A representation result for $\Gamma$-limit of supremal functionals,, J. Nonlinear Convex Anal., 4 (2003), 245.   Google Scholar

[22]

A. Briani, A. Garroni and F. Prinari, Homogenization of $L^\infty$ functionals,, Math. Models and Methods in Applied Sciences, 14 (2004), 1761.  doi: 10.1142/S0218202504003817.  Google Scholar

[23]

G. Buttazzo and G. Dal Maso, Integral representation and relaxation of local functionals,, Nonlinear Anal., 9 (1985), 515.  doi: 10.1016/0362-546X(85)90038-0.  Google Scholar

[24]

G. Buttazzo, "Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations,", Pitman Research Notes in Mathematics Series, 207 (1989).   Google Scholar

[25]

P. Cardaliaguet and F. Prinari, Supremal representation of $L^\infty$ functionals,, App. Math. Optim., 52 (2005), 129.  doi: 10.1007/s00245-005-0821-6.  Google Scholar

[26]

, P. Cardaliaguet and F. Prinari,, Unpublished., ().   Google Scholar

[27]

T. Champion, L. De Pascale and F. Prinari, Semicontinuity and absolute minimizers for supremal functionals,, ESAIM Control Optim. Calc. Var., 10 (2004), 14.  doi: 10.1051/cocv:2003036.  Google Scholar

[28]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Progress in Nonlinear Differential Equations and their Applications, 8 (1993).   Google Scholar

[29]

G. Dal Maso and P. Longo, $\Gamma$-limits of obstacles,, Ann. Mat. Pura Appl. (4), 128 (1981), 1.  doi: 10.1007/BF01789466.  Google Scholar

[30]

G. Dal Maso and L. Modica, A general theory of variational functionals,, in, (1981), 1980.   Google Scholar

[31]

E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842.   Google Scholar

[32]

A. Garroni, M. Ponsiglione and F. Prinari, Positively 1-homogeneous supremal functionals to difference quotients: Relaxation and $\Gamma$-convergence,, Calc. Var. Partial Differential Equations, 27 (2006), 397.   Google Scholar

[33]

A. Garroni, V. Nesi and M. Ponsiglione, Dielectric breakdown: Optimal bounds,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2317.  doi: 10.1098/rspa.2001.0803.  Google Scholar

[34]

H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity,, J. Math. Pures Appl. (9), 74 (1995), 549.   Google Scholar

[35]

F. Prinari, Relaxation and $\Gamma$-convergence of supremal functionals,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 9 (2006), 101.   Google Scholar

[36]

F. Prinari, Semicontinuity and relaxation of $L^\infty$-functionals,, Adv. Calc. Var., 2 (2009), 43.  doi: 10.1515/ACV.2009.003.  Google Scholar

[37]

J. Serrin, On the definition and the properties of certain variational integrals,, Trans. Amer. Math. Soc., 101 (1961), 139.  doi: 10.1090/S0002-9947-1961-0138018-9.  Google Scholar

[1]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[2]

Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 373-393. doi: 10.3934/dcdss.2020324

[3]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[4]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[5]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[6]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[7]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[8]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[9]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[10]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[11]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[12]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[13]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[14]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[15]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[16]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[17]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[18]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[19]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[20]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (3)

[Back to Top]