May  2012, 32(5): 1537-1555. doi: 10.3934/dcds.2012.32.1537

Stable manifolds with optimal regularity for difference equations

1. 

Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa

2. 

Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa

Received  December 2010 Revised  April 2011 Published  January 2012

We obtain stable invariant manifolds with optimal $C^k$ regularity for a nonautonomous dynamics with discrete time. The dynamics is obtained from a sufficiently small perturbation of a nonuniform exponential dichotomy, which includes the notion of (uniform) exponential dichotomy as a very special case. We emphasize that we do not require the dynamics to be of class $C^{k+\epsilon}$, in strong contrast to former results in the context of nonuniform hyperbolicity. We use the fiber contraction principle to establish the smoothness of the invariant manifolds. In addition, our method also allows linear perturbations, and thus the results readily apply to the robustness problem of nonuniform exponential dichotomies.
Citation: Luis Barreira, Claudia Valls. Stable manifolds with optimal regularity for difference equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1537-1555. doi: 10.3934/dcds.2012.32.1537
References:
[1]

L. Barreira and Ya. Pesin, "Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents," Encyclopedia of Math. and Its Appl., 115, Cambridge Univ. Press, Cambridge, 2007.

[2]

L. Barreira and C. Valls, Existence of stable manifolds for nonuniformly hyperbolic $C^1$ dynamics, Discrete Contin. Dyn. Syst., 16 (2006), 307-327. doi: 10.3934/dcds.2006.16.307.

[3]

L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations," Lect. Notes in Math., 1926, Springer, Berlin, 2008.

[4]

C. Chicone, "Ordinary Differential Equations with Applications," Second edition, Texts in Applied Mathematics, 34, Springer, New York, 2006.

[5]

A. Fathi, M. Herman and J.-C. Yoccoz, A proof of Pesin's stable manifold theorem, in "Geometric Dynamics" (ed. J. Palis, Rio de Janeiro, 1981), Lect. Notes. in Math., 1007, Springer, Berlin, (1983), 177-215.

[6]

R. Mañé, Lyapounov exponents and stable manifolds for compact transformations, in "Geometric Dynamics" (ed. J. Palis, Rio de Janeiro, 1981), Lect. Notes in Math., 1007, Springer, Berlin, (1983), 522-577.

[7]

V. Oseledec, A multiplicative ergodic theorem. Charactersitc Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč., 19 (1968), 179-210.

[8]

Ja. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents, Izv. Akad. Nauk SSSR Ser. Mat., 40 (1976), 1332-1379.

[9]

Ja. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk, 32 (1977), 55-114, 287.

[10]

Ja. Pesin, Geodesic flows on closed Riemannian manifolds without focal points, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 1252-1288, 1447.

[11]

C. Pugh and M. Shub, Ergodic attractors, Trans. Amer. Math. Soc., 312 (1989), 1-54. doi: 10.1090/S0002-9947-1989-0983869-1.

[12]

D. Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 27-58.

[13]

D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. of Math. (2), 115 (1982), 243-290. doi: 10.2307/1971392.

show all references

References:
[1]

L. Barreira and Ya. Pesin, "Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents," Encyclopedia of Math. and Its Appl., 115, Cambridge Univ. Press, Cambridge, 2007.

[2]

L. Barreira and C. Valls, Existence of stable manifolds for nonuniformly hyperbolic $C^1$ dynamics, Discrete Contin. Dyn. Syst., 16 (2006), 307-327. doi: 10.3934/dcds.2006.16.307.

[3]

L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations," Lect. Notes in Math., 1926, Springer, Berlin, 2008.

[4]

C. Chicone, "Ordinary Differential Equations with Applications," Second edition, Texts in Applied Mathematics, 34, Springer, New York, 2006.

[5]

A. Fathi, M. Herman and J.-C. Yoccoz, A proof of Pesin's stable manifold theorem, in "Geometric Dynamics" (ed. J. Palis, Rio de Janeiro, 1981), Lect. Notes. in Math., 1007, Springer, Berlin, (1983), 177-215.

[6]

R. Mañé, Lyapounov exponents and stable manifolds for compact transformations, in "Geometric Dynamics" (ed. J. Palis, Rio de Janeiro, 1981), Lect. Notes in Math., 1007, Springer, Berlin, (1983), 522-577.

[7]

V. Oseledec, A multiplicative ergodic theorem. Charactersitc Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč., 19 (1968), 179-210.

[8]

Ja. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents, Izv. Akad. Nauk SSSR Ser. Mat., 40 (1976), 1332-1379.

[9]

Ja. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk, 32 (1977), 55-114, 287.

[10]

Ja. Pesin, Geodesic flows on closed Riemannian manifolds without focal points, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 1252-1288, 1447.

[11]

C. Pugh and M. Shub, Ergodic attractors, Trans. Amer. Math. Soc., 312 (1989), 1-54. doi: 10.1090/S0002-9947-1989-0983869-1.

[12]

D. Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 27-58.

[13]

D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. of Math. (2), 115 (1982), 243-290. doi: 10.2307/1971392.

[1]

Redouane Qesmi, Hans-Otto Walther. Center-stable manifolds for differential equations with state-dependent delays. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1009-1033. doi: 10.3934/dcds.2009.23.1009

[2]

Alin Pogan, Kevin Zumbrun. Stable manifolds for a class of singular evolution equations and exponential decay of kinetic shocks. Kinetic and Related Models, 2019, 12 (1) : 1-36. doi: 10.3934/krm.2019001

[3]

Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993

[4]

Carlos Arnoldo Morales. Strong stable manifolds for sectional-hyperbolic sets. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 553-560. doi: 10.3934/dcds.2007.17.553

[5]

Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451

[6]

Mark Pollicott. Ergodicity of stable manifolds for nilpotent extensions of Anosov flows. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 599-604. doi: 10.3934/dcds.2002.8.599

[7]

Luis Barreira, Claudia Valls. Characterization of stable manifolds for nonuniform exponential dichotomies. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1025-1046. doi: 10.3934/dcds.2008.21.1025

[8]

Alexey Gorshkov. Stable invariant manifolds with application to control problems. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021040

[9]

Andrei Fursikov. Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 269-289. doi: 10.3934/dcdss.2010.3.269

[10]

John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843

[11]

Tao Jiang, Xianming Liu, Jinqiao Duan. Approximation for random stable manifolds under multiplicative correlated noises. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3163-3174. doi: 10.3934/dcdsb.2016091

[12]

Ale Jan Homburg. Heteroclinic bifurcations of $\Omega$-stable vector fields on 3-manifolds. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 559-580. doi: 10.3934/dcds.1998.4.559

[13]

Zemer Kosloff. On manifolds admitting stable type Ⅲ$_{\textbf1}$ Anosov diffeomorphisms. Journal of Modern Dynamics, 2018, 13: 251-270. doi: 10.3934/jmd.2018020

[14]

Luis Barreira, Claudia Valls. Existence of stable manifolds for nonuniformly hyperbolic $c^1$ dynamics. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 307-327. doi: 10.3934/dcds.2006.16.307

[15]

Anna Cima, Armengol Gasull, Francesc Mañosas. Global linearization of periodic difference equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1575-1595. doi: 10.3934/dcds.2012.32.1575

[16]

Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060

[17]

Eugenia N. Petropoulou. On some difference equations with exponential nonlinearity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2587-2594. doi: 10.3934/dcdsb.2017098

[18]

Ali Akgül, Mustafa Inc, Esra Karatas. Reproducing kernel functions for difference equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1055-1064. doi: 10.3934/dcdss.2015.8.1055

[19]

Yazhou Han. Integral equations on compact CR manifolds. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2187-2204. doi: 10.3934/dcds.2020358

[20]

Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]