May  2012, 32(5): 1537-1555. doi: 10.3934/dcds.2012.32.1537

Stable manifolds with optimal regularity for difference equations

1. 

Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa

2. 

Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa

Received  December 2010 Revised  April 2011 Published  January 2012

We obtain stable invariant manifolds with optimal $C^k$ regularity for a nonautonomous dynamics with discrete time. The dynamics is obtained from a sufficiently small perturbation of a nonuniform exponential dichotomy, which includes the notion of (uniform) exponential dichotomy as a very special case. We emphasize that we do not require the dynamics to be of class $C^{k+\epsilon}$, in strong contrast to former results in the context of nonuniform hyperbolicity. We use the fiber contraction principle to establish the smoothness of the invariant manifolds. In addition, our method also allows linear perturbations, and thus the results readily apply to the robustness problem of nonuniform exponential dichotomies.
Citation: Luis Barreira, Claudia Valls. Stable manifolds with optimal regularity for difference equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1537-1555. doi: 10.3934/dcds.2012.32.1537
References:
[1]

L. Barreira and Ya. Pesin, "Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents,", Encyclopedia of Math. and Its Appl., 115 (2007).   Google Scholar

[2]

L. Barreira and C. Valls, Existence of stable manifolds for nonuniformly hyperbolic $C^1$ dynamics,, Discrete Contin. Dyn. Syst., 16 (2006), 307.  doi: 10.3934/dcds.2006.16.307.  Google Scholar

[3]

L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations,", Lect. Notes in Math., 1926 (2008).   Google Scholar

[4]

C. Chicone, "Ordinary Differential Equations with Applications,", Second edition, 34 (2006).   Google Scholar

[5]

A. Fathi, M. Herman and J.-C. Yoccoz, A proof of Pesin's stable manifold theorem,, in, 1007 (1983), 177.   Google Scholar

[6]

R. Mañé, Lyapounov exponents and stable manifolds for compact transformations,, in, 1007 (1983), 522.   Google Scholar

[7]

V. Oseledec, A multiplicative ergodic theorem. Charactersitc Ljapunov, exponents of dynamical systems,, Trudy Moskov. Mat. Obšč., 19 (1968), 179.   Google Scholar

[8]

Ja. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents,, Izv. Akad. Nauk SSSR Ser. Mat., 40 (1976), 1332.   Google Scholar

[9]

Ja. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory,, Uspehi Mat. Nauk, 32 (1977), 55.   Google Scholar

[10]

Ja. Pesin, Geodesic flows on closed Riemannian manifolds without focal points,, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 1252.   Google Scholar

[11]

C. Pugh and M. Shub, Ergodic attractors,, Trans. Amer. Math. Soc., 312 (1989), 1.  doi: 10.1090/S0002-9947-1989-0983869-1.  Google Scholar

[12]

D. Ruelle, Ergodic theory of differentiable dynamical systems,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 27.   Google Scholar

[13]

D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space,, Ann. of Math. (2), 115 (1982), 243.  doi: 10.2307/1971392.  Google Scholar

show all references

References:
[1]

L. Barreira and Ya. Pesin, "Nonuniform Hyperbolicity. Dynamics of Systems with Nonzero Lyapunov Exponents,", Encyclopedia of Math. and Its Appl., 115 (2007).   Google Scholar

[2]

L. Barreira and C. Valls, Existence of stable manifolds for nonuniformly hyperbolic $C^1$ dynamics,, Discrete Contin. Dyn. Syst., 16 (2006), 307.  doi: 10.3934/dcds.2006.16.307.  Google Scholar

[3]

L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations,", Lect. Notes in Math., 1926 (2008).   Google Scholar

[4]

C. Chicone, "Ordinary Differential Equations with Applications,", Second edition, 34 (2006).   Google Scholar

[5]

A. Fathi, M. Herman and J.-C. Yoccoz, A proof of Pesin's stable manifold theorem,, in, 1007 (1983), 177.   Google Scholar

[6]

R. Mañé, Lyapounov exponents and stable manifolds for compact transformations,, in, 1007 (1983), 522.   Google Scholar

[7]

V. Oseledec, A multiplicative ergodic theorem. Charactersitc Ljapunov, exponents of dynamical systems,, Trudy Moskov. Mat. Obšč., 19 (1968), 179.   Google Scholar

[8]

Ja. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents,, Izv. Akad. Nauk SSSR Ser. Mat., 40 (1976), 1332.   Google Scholar

[9]

Ja. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory,, Uspehi Mat. Nauk, 32 (1977), 55.   Google Scholar

[10]

Ja. Pesin, Geodesic flows on closed Riemannian manifolds without focal points,, Izv. Akad. Nauk SSSR Ser. Mat., 41 (1977), 1252.   Google Scholar

[11]

C. Pugh and M. Shub, Ergodic attractors,, Trans. Amer. Math. Soc., 312 (1989), 1.  doi: 10.1090/S0002-9947-1989-0983869-1.  Google Scholar

[12]

D. Ruelle, Ergodic theory of differentiable dynamical systems,, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 27.   Google Scholar

[13]

D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space,, Ann. of Math. (2), 115 (1982), 243.  doi: 10.2307/1971392.  Google Scholar

[1]

Redouane Qesmi, Hans-Otto Walther. Center-stable manifolds for differential equations with state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1009-1033. doi: 10.3934/dcds.2009.23.1009

[2]

Alin Pogan, Kevin Zumbrun. Stable manifolds for a class of singular evolution equations and exponential decay of kinetic shocks. Kinetic & Related Models, 2019, 12 (1) : 1-36. doi: 10.3934/krm.2019001

[3]

Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993

[4]

Carlos Arnoldo Morales. Strong stable manifolds for sectional-hyperbolic sets. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 553-560. doi: 10.3934/dcds.2007.17.553

[5]

Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451

[6]

Mark Pollicott. Ergodicity of stable manifolds for nilpotent extensions of Anosov flows. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 599-604. doi: 10.3934/dcds.2002.8.599

[7]

Luis Barreira, Claudia Valls. Characterization of stable manifolds for nonuniform exponential dichotomies. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1025-1046. doi: 10.3934/dcds.2008.21.1025

[8]

Andrei Fursikov. Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 269-289. doi: 10.3934/dcdss.2010.3.269

[9]

John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843

[10]

Anna Cima, Armengol Gasull, Francesc Mañosas. Global linearization of periodic difference equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1575-1595. doi: 10.3934/dcds.2012.32.1575

[11]

Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060

[12]

Eugenia N. Petropoulou. On some difference equations with exponential nonlinearity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2587-2594. doi: 10.3934/dcdsb.2017098

[13]

Ali Akgül, Mustafa Inc, Esra Karatas. Reproducing kernel functions for difference equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1055-1064. doi: 10.3934/dcdss.2015.8.1055

[14]

Tao Jiang, Xianming Liu, Jinqiao Duan. Approximation for random stable manifolds under multiplicative correlated noises. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3163-3174. doi: 10.3934/dcdsb.2016091

[15]

Ale Jan Homburg. Heteroclinic bifurcations of $\Omega$-stable vector fields on 3-manifolds. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 559-580. doi: 10.3934/dcds.1998.4.559

[16]

Luis Barreira, Claudia Valls. Existence of stable manifolds for nonuniformly hyperbolic $c^1$ dynamics. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 307-327. doi: 10.3934/dcds.2006.16.307

[17]

Zemer Kosloff. On manifolds admitting stable type Ⅲ$_{\textbf1}$ Anosov diffeomorphisms. Journal of Modern Dynamics, 2018, 13: 251-270. doi: 10.3934/jmd.2018020

[18]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[19]

Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861

[20]

Bi Ping, Maoan Han. Oscillation of second order difference equations with advanced argument. Conference Publications, 2003, 2003 (Special) : 108-112. doi: 10.3934/proc.2003.2003.108

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]