May  2012, 32(5): 1557-1574. doi: 10.3934/dcds.2012.32.1557

Periodic and subharmonic solutions for duffing equation with a singularity

1. 

Dept. of Math., Zhengzhou University, Zhengzhou 450001

Received  December 2010 Revised  April 2011 Published  January 2012

This paper is devoted to the existence and multiplicity of periodic and subharmonic solutions for a superlinear Duffing equation with a singularity. In this manner, various preceding theorems are improved and sharpened. Our proof is based on a generalized version of the Poincaré-Birkhoff twist theorem.
Citation: Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557
References:
[1]

P. Le Calvez and J. Wang, Some remarks on the Poincaré-Birkhoff theorem,, Proc. Amer. Math. Soc., 138 (2010), 703.  doi: 10.1090/S0002-9939-09-10105-3.  Google Scholar

[2]

T. R. Ding, "Applications of Qualitative Methods of Ordinary Differential Equations,", Higher Education Press, (2004).   Google Scholar

[3]

T. R. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential,, J. Differential Equations, 97 (1992), 328.  doi: 10.1016/0022-0396(92)90076-Y.  Google Scholar

[4]

T. R. Ding, R. Iannacci and F. Zanolin, Existence and multiplicity results for periodic solution of semilinear Duffing equation,, J. Differential Equations, 105 (1993), 364.  doi: 10.1006/jdeq.1993.1093.  Google Scholar

[5]

W. Y. Ding, A generalization of the Poincaré-Birkhoff theorem,, Proc. Amer. Math. Soc., 88 (1983), 341.  doi: 10.1090/S0002-9939-1983-0695272-2.  Google Scholar

[6]

A. Fonda, R. Manásevich and F. Zanolin, Subharmonic solutions for some second-order differential equatins with singularities,, SIAM J. Math. Anal., 24 (1993), 1294.  doi: 10.1137/0524074.  Google Scholar

[7]

A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth,, Nonlinear Analy., 74 (2011), 2485.  doi: 10.1016/j.na.2010.12.004.  Google Scholar

[8]

P. Habets and L. Sanchez, Periodic solution of some Liénard equations with singularities,, Proc. Amer. Math. Soc., 109 (1990), 1035.  doi: 10.2307/2048134.  Google Scholar

[9]

D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations,, J. Differential Equations, 211 (2005), 282.  doi: 10.1016/j.jde.2004.10.031.  Google Scholar

[10]

Z. Opial, Sur les périodes des solutions de l'équation différentielle $ x''+g(x)= 0$,, Ann. Polon. Math., 10 (1961), 49.   Google Scholar

[11]

M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equations with singularities,, Proc. R. Soc. Edinb. Sect. A, 120 (1992), 231.  doi: 10.1017/S030821050003211X.  Google Scholar

[12]

M. del Pino and R. Manásevich, Infinitely many $T$-periodic solutions for a problem ariding in nonlinear elasticity,, J. Differential Equations, 103 (1993), 260.  doi: 10.1006/jdeq.1993.1050.  Google Scholar

[13]

J. L. Ren, Z. B. Cheng and S. Siegmund, Positive periodic solution for Brillouin electron beam focusing system,, Discrete Continuous Dynam. Systems B, ().   Google Scholar

[14]

S. Taliaferro, A nonlinear singular boundary value problem,, Nonlinear Anal., 3 (1979), 897.  doi: 10.1016/0362-546X(79)90057-9.  Google Scholar

[15]

P. J. Torres, Weak singularities may help periodic solutions to exist,, J. Differential Equations, 232 (2007), 277.  doi: 10.1016/j.jde.2006.08.006.  Google Scholar

[16]

Z.-H. Wang, Periodic solutions of the second-order differential equations with singularity,, Nonlinear Anal., 58 (2004), 319.  doi: 10.1016/j.na.2004.05.006.  Google Scholar

[17]

J. Xia and Z.-H. Wang, Existence and multiplicity of periodic solutions for the Duffing equation with singularity,, Proc. R. Soc. Edinb. Sect. A, 137 (2007), 625.   Google Scholar

show all references

References:
[1]

P. Le Calvez and J. Wang, Some remarks on the Poincaré-Birkhoff theorem,, Proc. Amer. Math. Soc., 138 (2010), 703.  doi: 10.1090/S0002-9939-09-10105-3.  Google Scholar

[2]

T. R. Ding, "Applications of Qualitative Methods of Ordinary Differential Equations,", Higher Education Press, (2004).   Google Scholar

[3]

T. R. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential,, J. Differential Equations, 97 (1992), 328.  doi: 10.1016/0022-0396(92)90076-Y.  Google Scholar

[4]

T. R. Ding, R. Iannacci and F. Zanolin, Existence and multiplicity results for periodic solution of semilinear Duffing equation,, J. Differential Equations, 105 (1993), 364.  doi: 10.1006/jdeq.1993.1093.  Google Scholar

[5]

W. Y. Ding, A generalization of the Poincaré-Birkhoff theorem,, Proc. Amer. Math. Soc., 88 (1983), 341.  doi: 10.1090/S0002-9939-1983-0695272-2.  Google Scholar

[6]

A. Fonda, R. Manásevich and F. Zanolin, Subharmonic solutions for some second-order differential equatins with singularities,, SIAM J. Math. Anal., 24 (1993), 1294.  doi: 10.1137/0524074.  Google Scholar

[7]

A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth,, Nonlinear Analy., 74 (2011), 2485.  doi: 10.1016/j.na.2010.12.004.  Google Scholar

[8]

P. Habets and L. Sanchez, Periodic solution of some Liénard equations with singularities,, Proc. Amer. Math. Soc., 109 (1990), 1035.  doi: 10.2307/2048134.  Google Scholar

[9]

D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations,, J. Differential Equations, 211 (2005), 282.  doi: 10.1016/j.jde.2004.10.031.  Google Scholar

[10]

Z. Opial, Sur les périodes des solutions de l'équation différentielle $ x''+g(x)= 0$,, Ann. Polon. Math., 10 (1961), 49.   Google Scholar

[11]

M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equations with singularities,, Proc. R. Soc. Edinb. Sect. A, 120 (1992), 231.  doi: 10.1017/S030821050003211X.  Google Scholar

[12]

M. del Pino and R. Manásevich, Infinitely many $T$-periodic solutions for a problem ariding in nonlinear elasticity,, J. Differential Equations, 103 (1993), 260.  doi: 10.1006/jdeq.1993.1050.  Google Scholar

[13]

J. L. Ren, Z. B. Cheng and S. Siegmund, Positive periodic solution for Brillouin electron beam focusing system,, Discrete Continuous Dynam. Systems B, ().   Google Scholar

[14]

S. Taliaferro, A nonlinear singular boundary value problem,, Nonlinear Anal., 3 (1979), 897.  doi: 10.1016/0362-546X(79)90057-9.  Google Scholar

[15]

P. J. Torres, Weak singularities may help periodic solutions to exist,, J. Differential Equations, 232 (2007), 277.  doi: 10.1016/j.jde.2006.08.006.  Google Scholar

[16]

Z.-H. Wang, Periodic solutions of the second-order differential equations with singularity,, Nonlinear Anal., 58 (2004), 319.  doi: 10.1016/j.na.2004.05.006.  Google Scholar

[17]

J. Xia and Z.-H. Wang, Existence and multiplicity of periodic solutions for the Duffing equation with singularity,, Proc. R. Soc. Edinb. Sect. A, 137 (2007), 625.   Google Scholar

[1]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[2]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[3]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[15]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[16]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[17]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[18]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (20)

Other articles
by authors

[Back to Top]