Advanced Search
Article Contents
Article Contents

Periodic and subharmonic solutions for duffing equation with a singularity

Abstract Related Papers Cited by
  • This paper is devoted to the existence and multiplicity of periodic and subharmonic solutions for a superlinear Duffing equation with a singularity. In this manner, various preceding theorems are improved and sharpened. Our proof is based on a generalized version of the Poincaré-Birkhoff twist theorem.
    Mathematics Subject Classification: 34C15, 34C25.


    \begin{equation} \\ \end{equation}
  • [1]

    P. Le Calvez and J. Wang, Some remarks on the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc., 138 (2010), 703-715.doi: 10.1090/S0002-9939-09-10105-3.


    T. R. Ding, "Applications of Qualitative Methods of Ordinary Differential Equations," Higher Education Press, Beijing, 2004.


    T. R. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential, J. Differential Equations, 97 (1992), 328-378.doi: 10.1016/0022-0396(92)90076-Y.


    T. R. Ding, R. Iannacci and F. Zanolin, Existence and multiplicity results for periodic solution of semilinear Duffing equation, J. Differential Equations, 105 (1993), 364-409.doi: 10.1006/jdeq.1993.1093.


    W. Y. Ding, A generalization of the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc., 88 (1983), 341-346.doi: 10.1090/S0002-9939-1983-0695272-2.


    A. Fonda, R. Manásevich and F. Zanolin, Subharmonic solutions for some second-order differential equatins with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1311.doi: 10.1137/0524074.


    A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth, Nonlinear Analy., 74 (2011), 2485-2496.doi: 10.1016/j.na.2010.12.004.


    P. Habets and L. Sanchez, Periodic solution of some Liénard equations with singularities, Proc. Amer. Math. Soc., 109 (1990), 1035-1044.doi: 10.2307/2048134.


    D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations, J. Differential Equations, 211 (2005), 282-302.doi: 10.1016/j.jde.2004.10.031.


    Z. Opial, Sur les périodes des solutions de l'équation différentielle $ x''+g(x)= 0$, Ann. Polon. Math., 10 (1961), 49-72.


    M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equations with singularities, Proc. R. Soc. Edinb. Sect. A, 120 (1992), 231-243.doi: 10.1017/S030821050003211X.


    M. del Pino and R. Manásevich, Infinitely many $T$-periodic solutions for a problem ariding in nonlinear elasticity, J. Differential Equations, 103 (1993), 260-277.doi: 10.1006/jdeq.1993.1050.


    J. L. Ren, Z. B. Cheng and S. SiegmundPositive periodic solution for Brillouin electron beam focusing system, Discrete Continuous Dynam. Systems B, in press.


    S. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Anal., 3 (1979), 897-904.doi: 10.1016/0362-546X(79)90057-9.


    P. J. Torres, Weak singularities may help periodic solutions to exist, J. Differential Equations, 232 (2007), 277-284.doi: 10.1016/j.jde.2006.08.006.


    Z.-H. Wang, Periodic solutions of the second-order differential equations with singularity, Nonlinear Anal., 58 (2004), 319-331.doi: 10.1016/j.na.2004.05.006.


    J. Xia and Z.-H. Wang, Existence and multiplicity of periodic solutions for the Duffing equation with singularity, Proc. R. Soc. Edinb. Sect. A, 137 (2007), 625-645.

  • 加载中

Article Metrics

HTML views() PDF downloads(153) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint