\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Periodic and subharmonic solutions for duffing equation with a singularity

Abstract Related Papers Cited by
  • This paper is devoted to the existence and multiplicity of periodic and subharmonic solutions for a superlinear Duffing equation with a singularity. In this manner, various preceding theorems are improved and sharpened. Our proof is based on a generalized version of the Poincaré-Birkhoff twist theorem.
    Mathematics Subject Classification: 34C15, 34C25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Le Calvez and J. Wang, Some remarks on the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc., 138 (2010), 703-715.doi: 10.1090/S0002-9939-09-10105-3.

    [2]

    T. R. Ding, "Applications of Qualitative Methods of Ordinary Differential Equations," Higher Education Press, Beijing, 2004.

    [3]

    T. R. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential, J. Differential Equations, 97 (1992), 328-378.doi: 10.1016/0022-0396(92)90076-Y.

    [4]

    T. R. Ding, R. Iannacci and F. Zanolin, Existence and multiplicity results for periodic solution of semilinear Duffing equation, J. Differential Equations, 105 (1993), 364-409.doi: 10.1006/jdeq.1993.1093.

    [5]

    W. Y. Ding, A generalization of the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc., 88 (1983), 341-346.doi: 10.1090/S0002-9939-1983-0695272-2.

    [6]

    A. Fonda, R. Manásevich and F. Zanolin, Subharmonic solutions for some second-order differential equatins with singularities, SIAM J. Math. Anal., 24 (1993), 1294-1311.doi: 10.1137/0524074.

    [7]

    A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth, Nonlinear Analy., 74 (2011), 2485-2496.doi: 10.1016/j.na.2010.12.004.

    [8]

    P. Habets and L. Sanchez, Periodic solution of some Liénard equations with singularities, Proc. Amer. Math. Soc., 109 (1990), 1035-1044.doi: 10.2307/2048134.

    [9]

    D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations, J. Differential Equations, 211 (2005), 282-302.doi: 10.1016/j.jde.2004.10.031.

    [10]

    Z. Opial, Sur les périodes des solutions de l'équation différentielle $ x''+g(x)= 0$, Ann. Polon. Math., 10 (1961), 49-72.

    [11]

    M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equations with singularities, Proc. R. Soc. Edinb. Sect. A, 120 (1992), 231-243.doi: 10.1017/S030821050003211X.

    [12]

    M. del Pino and R. Manásevich, Infinitely many $T$-periodic solutions for a problem ariding in nonlinear elasticity, J. Differential Equations, 103 (1993), 260-277.doi: 10.1006/jdeq.1993.1050.

    [13]

    J. L. Ren, Z. B. Cheng and S. SiegmundPositive periodic solution for Brillouin electron beam focusing system, Discrete Continuous Dynam. Systems B, in press.

    [14]

    S. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Anal., 3 (1979), 897-904.doi: 10.1016/0362-546X(79)90057-9.

    [15]

    P. J. Torres, Weak singularities may help periodic solutions to exist, J. Differential Equations, 232 (2007), 277-284.doi: 10.1016/j.jde.2006.08.006.

    [16]

    Z.-H. Wang, Periodic solutions of the second-order differential equations with singularity, Nonlinear Anal., 58 (2004), 319-331.doi: 10.1016/j.na.2004.05.006.

    [17]

    J. Xia and Z.-H. Wang, Existence and multiplicity of periodic solutions for the Duffing equation with singularity, Proc. R. Soc. Edinb. Sect. A, 137 (2007), 625-645.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(153) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return