\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Central limit theorem for stationary products of toral automorphisms

Abstract Related Papers Cited by
  • Let $(A_n(\omega))$ be a stationary process in ${\mathcal M}_d^*(\mathbb{Z})$. For a Hölder function $f$ on $\mathbb{T}^d$ we consider the sums $\sum_{k=1}^n f(^t\hskip -3pt A_k(\omega) \, ^t\hskip -3pt A_{k-1}(\omega) \cdots ^t\hskip -3pt A_1(\omega) \, x {\rm \ mod \ } 1)$ and prove a Central Limit Theorem for a.e. $\omega$ in different situations in particular for "kicked" stationary processes. We use the method of multiplicative systems of Komlòs and the Multiplicative Ergodic Theorem.
    Mathematics Subject Classification: 60F05, 37A30, 60G10, 37D99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Aistleitner and I. Berkes, On the central limit theorem for $f(n_k x)$, Probab. Theory Related Fields, 146 (2010), 267-289.

    [2]

    A. Ayyer and M. Stenlund, Exponential decay of correlations for randomly chosen hyperbolic toral automorphisms, Chaos, 17 (2007), 043116, 7 pp.

    [3]

    A. Ayyer, C. Liverani and M. Stenlund, Quenched CLT for random toral automorphism, Discrete Contin. Dyn. Syst., 24 (2009), 331-348.doi: 10.3934/dcds.2009.24.331.

    [4]

    V. I. Bakhtin, Random processes generated by a hyperbolic sequence of mappings (I, II), Rus. Ac. Sci. Izv. Math., 44 (1995), 247-279 and 617-627, (MR1286845).

    [5]

    I. Berkes, On the asymptotic behaviour of $Sf(n_kx)$. Main theorems, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 34 (1976), 319-345.doi: 10.1007/BF00535967.

    [6]

    B. M. Brown, Martingale central limit theorems, Annals of Math. Statistics, 42 (1971), 59-66.

    [7]

    J.-P. Conze and S. Le Borgne, Limit law for some modified ergodic sums, Stochastics and Dynamics, 11 (2011), 107-133.doi: 10.1142/S021949371100319X.

    [8]

    J.-P. Conze and S. Le Borgne, Théorème limite central presque sûr pour les marches aléatoires avec trou spectral, [Quenched central limit theorem for random walks with a spectral gap], CRAS, 2011.

    [9]

    J.-P. Conze and A. Raugi, Limit theorems for sequential expanding dynamical systems on [0,1], in "Ergodic Theory and Related Fields," Contemporary Mathematics, 430, Amer. Math. Soc., Providence, RI, (2007), 89-121.

    [10]

    W. Feller, "An Introduction to Probability Theory and its Applications," Vol. II, Second edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971.

    [11]

    V. F. Gaposhkin, Lacunary series and independent functions, (Russian), Uspehi Mat. Nauk, 21 (1966), 3-82.

    [12]

    J. Komlós, A central limit theorem for multiplicative systems, Canad. Math. Bull., 16 (1973), 67-73.doi: 10.4153/CMB-1973-014-3.

    [13]

    V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč., 19 (1968), 179-210.

    [14]

    B. Petit, Le théorème limite central pour des sommes de Riesz-Raĭkov, Probab. Theory Related Fields, 93 (1992), 407-438.doi: 10.1007/BF01192715.

    [15]

    L. Polterovich and Z. Rudnick, Stable mixing for cat maps and quasi-morphisms of the modular group, Ergodic Theory Dynam. Systems, 24 (2004), 609-619.doi: 10.1017/S0143385703000531.

    [16]

    A. Raugi, "Théorème Ergodique Multiplicatif, Produits de Matrices Aléatoires Indépendantes," Publ. Inst. Rech. Math. Rennes, 1996/1997, Univ. Rennes I, Rennes, 1997.

    [17]

    M. Viana, "Stochastic Dynamics of Deterministic Systems," Brazilian Math. Colloquium, IMPA, 1997.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(121) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return