\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Extending $T^p$ automorphisms over $\mathbb{R}^{p+2}$ and realizing DE attractors

Abstract / Introduction Related Papers Cited by
  • We show that for every expanding self-map of a connected, closed $p$-dimensional manifold $M$, and for every codimension $q\geq p+1$, there exists a corresponding $(p,q)$-type DE attractor realized by a compactly-supported self-diffeomorphsm of $\mathbb{R}^{p+q}$. Moreover, when $M$ is the standard smooth $p$-dimensional torus $T^p$, the codimension $q$ can be taken as two. As a key ingredient of the construction, for the standard unknotted embedding $\imath_p:T^p\hookrightarrow\mathbb{R}^{p+2}$, we show the automorphisms that diffeomorphically extend over $\mathbb{R}^{p+2}$ form a subgroup of $Aut(T^p)$ of index at most $2^p-1$.
    Mathematics Subject Classification: Primary: 37C70; Secondary: 57R40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Hans G. Bothe, The ambient structure of expanding attractors. II. Solenoids in 3-manifolds, Math. Nachr., 112 (1983), 69-102.doi: 10.1002/mana.19831120105.

    [2]

    Fan Ding, Yi Liu, Shicheng Wang and Jiangang YaoSpin structure and codimension-two homeomorphism extension, preprint, arXiv:0910.4949.

    [3]

    Fan Ding, Jianzhong Pan, Shicheng Wang and Jiangang Yao, Only rational homology spheres admit $\Omega(f)$ to be union of DE attractors, Ergodic Theory Dynam. Systems, 30 (2010), 1399-1417.doi: 10.1017/S014338570900073X.

    [4]

    Karel Dekimpe, Michał Sadowski and Andrzej Szczepański, Spin structures on flat manifolds, Monatsh. Math., 148 (2006), 283-296.

    [5]

    David Epstein and Michael Shub, Expanding endomorphisms of flat manifolds, Topol., 7 (1968), 139-141.doi: 10.1016/0040-9383(68)90022-0.

    [6]

    Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53-73.

    [7]

    André HaefligerPlongements différentiables dans le domaine stable, (French), Comment. Math. Helv., 37 (1962/1963), 155-176.

    [8]

    Morris W. Hirsch, "Differential Topology," Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976.

    [9]

    Boju Jiang, Yi Ni and Shicheng Wang, 3-manifolds that admit knotted solenoids as attractors, Trans. Amer. Math. Soc., 356 (2004), 4371-4382.doi: 10.1090/S0002-9947-04-03503-2.

    [10]

    Boju Jiang, Shicheng Wang and Hao Zheng, No embeddings of solenoids into surfaces, Proc. Amer. Math. Soc., 136 (2008), 3697-3700.doi: 10.1090/S0002-9939-08-09340-4.

    [11]

    John W. Milnor and James D. Stasheff, "Characteristic Classes," Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1974.

    [12]

    Morris Newman, "Integral Matrices," Pure and Applied Mathematics, Vol. 45, Academic Press, New York-London, 1972.

    [13]

    Stephen Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.doi: 10.1090/S0002-9904-1967-11798-1.

    [14]

    Thomas E. Stewart, On groups of diffeomorphisms, Proc. Amer. Math. Soc., 11 (1960), 559-563.doi: 10.1090/S0002-9939-1960-0120651-6.

    [15]

    Wen-tsün Wu, On the isotopy of $C^r$-manifolds of dimension $n$ in euclidean $(2n+1)$-space, Sci. Record (N.S.), 2 (1958), 271-275.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(214) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return