May  2012, 32(5): 1657-1674. doi: 10.3934/dcds.2012.32.1657

Minimal skew products with hypertransitive or mixing properties

1. 

Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovak Republic

Received  December 2010 Revised  August 2011 Published  January 2012

Let $X$ be an infinite compact metric space and let $Z$ be a compact metric space admitting an arc-wise connected group $\mathcal H_0(Z)$ of homeomorphisms whose natural action on $Z$ is topologically transitive. We show that every map $f$ on $X$ with a hypertransitive property $\Lambda$ admits a skew product extension $F=(f,g_x)$ on $X\times Z$ which also has the property $\Lambda$ and whose all fibre maps $g_x$ lie in the closure $\overline{\mathcal H_0(Z)}$ of $\mathcal H_0(Z)$ in the space $\mathcal H(Z)$ of all homeomorphisms on $Z$.
    If we additionally assume that both the map $f$ and the action of $\mathcal H_0(Z)$ on $Z$ are minimal then we can guarantee the existence of such an extension $F$ in the class of minimal maps. In particular case when $\Lambda$= topological transitivity, such a theorem was known before (for invertible $f$ it was proved by Glasner and Weiss already in 1979).
    Finally, we show that if one imposes further restrictions on the group $\mathcal H_0(Z)$ then the analogues of the mentioned results for hypertransitive properties $\Lambda$ hold also for $\Lambda$= strong mixing.
Citation: Matúš Dirbák. Minimal skew products with hypertransitive or mixing properties. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1657-1674. doi: 10.3934/dcds.2012.32.1657
References:
[1]

S. Agronsky and J. G. Ceder, Each Peano subspace of $E^k$ is an $\omega$-limit set,, Real Anal. Exchange, 17 (): 371.   Google Scholar

[2]

Ll. Alsedà, S. Kolyada, J. Llibre and Ľ. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551.  doi: 10.1090/S0002-9947-99-02077-2.  Google Scholar

[3]

F. Balibrea and Ľ. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225.  doi: 10.1016/S0166-8641(03)00090-7.  Google Scholar

[4]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[5]

M. Dirbák, Extensions of dynamical systems without increasing the entropy,, Nonlinearity, 21 (2008), 2693.  doi: 10.1088/0951-7715/21/11/011.  Google Scholar

[6]

M. Dirbák and P. Maličký, On the construction of non-invertible minimal skew products,, J. Math. Anal. Appl., 375 (2011), 436.  doi: 10.1016/j.jmaa.2010.09.042.  Google Scholar

[7]

D. van Dantzig and B. L. van der Waerden, Über metrisch homogene Räume,, Abhandlungen Hamburg, 6 (1928), 367.   Google Scholar

[8]

S. Glasner and B. Weiss, On the construction of minimal skew products,, Israel J. Math., 34 (1979), 321.  doi: 10.1007/BF02760611.  Google Scholar

[9]

K. H. Hofmann and S. A. Morris, "The Structure of Compact Groups. A Primer for the Student--a Handbook for the Expert," Second revised and augmented edition,, de Gruyter Studies in Mathematics, 25 (2006).   Google Scholar

[10]

S. Kolyada and M. Matviichuk, On extensions of transitive maps,, Discrete Contin. Dyn. Syst., 30 (2011), 767.   Google Scholar

[11]

S. Kolyada, Ľ. Snoha and S. Trofimchuk, Noninvertible minimal maps,, Fund. Math., 168 (2001), 141.  doi: 10.4064/fm168-2-5.  Google Scholar

[12]

K. Kuratowski, "Topology," Vol. I, New edition, revised and augmented,, Translated from the French by J. Jaworowski, (1966).   Google Scholar

show all references

References:
[1]

S. Agronsky and J. G. Ceder, Each Peano subspace of $E^k$ is an $\omega$-limit set,, Real Anal. Exchange, 17 (): 371.   Google Scholar

[2]

Ll. Alsedà, S. Kolyada, J. Llibre and Ľ. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551.  doi: 10.1090/S0002-9947-99-02077-2.  Google Scholar

[3]

F. Balibrea and Ľ. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225.  doi: 10.1016/S0166-8641(03)00090-7.  Google Scholar

[4]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[5]

M. Dirbák, Extensions of dynamical systems without increasing the entropy,, Nonlinearity, 21 (2008), 2693.  doi: 10.1088/0951-7715/21/11/011.  Google Scholar

[6]

M. Dirbák and P. Maličký, On the construction of non-invertible minimal skew products,, J. Math. Anal. Appl., 375 (2011), 436.  doi: 10.1016/j.jmaa.2010.09.042.  Google Scholar

[7]

D. van Dantzig and B. L. van der Waerden, Über metrisch homogene Räume,, Abhandlungen Hamburg, 6 (1928), 367.   Google Scholar

[8]

S. Glasner and B. Weiss, On the construction of minimal skew products,, Israel J. Math., 34 (1979), 321.  doi: 10.1007/BF02760611.  Google Scholar

[9]

K. H. Hofmann and S. A. Morris, "The Structure of Compact Groups. A Primer for the Student--a Handbook for the Expert," Second revised and augmented edition,, de Gruyter Studies in Mathematics, 25 (2006).   Google Scholar

[10]

S. Kolyada and M. Matviichuk, On extensions of transitive maps,, Discrete Contin. Dyn. Syst., 30 (2011), 767.   Google Scholar

[11]

S. Kolyada, Ľ. Snoha and S. Trofimchuk, Noninvertible minimal maps,, Fund. Math., 168 (2001), 141.  doi: 10.4064/fm168-2-5.  Google Scholar

[12]

K. Kuratowski, "Topology," Vol. I, New edition, revised and augmented,, Translated from the French by J. Jaworowski, (1966).   Google Scholar

[1]

Grant Cairns, Barry Jessup, Marcel Nicolau. Topologically transitive homeomorphisms of quotients of tori. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 291-300. doi: 10.3934/dcds.1999.5.291

[2]

Viorel Nitica. Examples of topologically transitive skew-products. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 351-360. doi: 10.3934/dcds.2000.6.351

[3]

Woochul Jung, Keonhee Lee, Carlos Morales, Jumi Oh. Rigidity of random group actions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6845-6854. doi: 10.3934/dcds.2020130

[4]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[5]

Maik Gröger, Olga Lukina. Measures and stabilizers of group Cantor actions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020350

[6]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[7]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020269

[8]

A. Katok and R. J. Spatzier. Nonstationary normal forms and rigidity of group actions. Electronic Research Announcements, 1996, 2: 124-133.

[9]

Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195

[10]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020320

[11]

Mickaël D. Chekroun, Jean Roux. Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3957-3980. doi: 10.3934/dcds.2013.33.3957

[12]

Van Cyr, Bryna Kra. The automorphism group of a minimal shift of stretched exponential growth. Journal of Modern Dynamics, 2016, 10: 483-495. doi: 10.3934/jmd.2016.10.483

[13]

Xinjing Wang, Pengcheng Niu, Xuewei Cui. A Liouville type theorem to an extension problem relating to the Heisenberg group. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2379-2394. doi: 10.3934/cpaa.2018113

[14]

Salvador Addas-Zanata, Fábio A. Tal. Homeomorphisms of the annulus with a transitive lift II. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 651-668. doi: 10.3934/dcds.2011.31.651

[15]

Peng Sun. Minimality and gluing orbit property. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4041-4056. doi: 10.3934/dcds.2019162

[16]

Joachim Escher, Rossen Ivanov, Boris Kolev. Euler equations on a semi-direct product of the diffeomorphisms group by itself. Journal of Geometric Mechanics, 2011, 3 (3) : 313-322. doi: 10.3934/jgm.2011.3.313

[17]

Dariusz Skrenty. Absolutely continuous spectrum of some group extensions of Gaussian actions. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 365-378. doi: 10.3934/dcds.2010.26.365

[18]

Jean-Pierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4239-4269. doi: 10.3934/dcds.2013.33.4239

[19]

Xiaojun Huang, Zhiqiang Li, Yunhua Zhou. A variational principle of topological pressure on subsets for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2687-2703. doi: 10.3934/dcds.2020146

[20]

Jean-Paul Thouvenot. The work of Lewis Bowen on the entropy theory of non-amenable group actions. Journal of Modern Dynamics, 2019, 15: 133-141. doi: 10.3934/jmd.2019016

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]