May  2012, 32(5): 1709-1721. doi: 10.3934/dcds.2012.32.1709

Expansive and fixed point free homeomorphisms of the plane

1. 

Instituto de Matemática y Estadística "Prof. Ing. Rafael Laguardia”, Facultad de Ingeniería, Julio Herrera y Reissig 565 11300, MONTEVIDEO

Received  November 2010 Revised  September 2011 Published  January 2012

The aim of this work is to describe the set of fixed point free homeomorphisms of the plane (preserving orientation or not) under certain expansive conditions. We find necessary and sufficient conditions for a fixed point free homeomorphism of the plane to be topologically conjugate to a translation.
Citation: Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709
References:
[1]

L. Brouwer, Beweis des ebenen Translationssatzes,, Math. Ann., 72 (1912), 37.  doi: 10.1007/BF01456888.  Google Scholar

[2]

A. Fathi, Expansiveness, hyperbolicity and Hausdorff dimension,, Commun. Math. Phys., 126 (1989), 249.  doi: 10.1007/BF02125125.  Google Scholar

[3]

J. Franks, A new proof of the Brouwer plane translation theorem,, Ergod. Th. and Dynamic. Sys., 12 (1991), 217.   Google Scholar

[4]

Jorge Groisman, "Expansive Homeomorphisms of the Plane,", Ph.D. thesis, (2007).   Google Scholar

[5]

J. Groisman, Expansive homeomorphisms of the plane,, Discrete and Continuous Dynam. Systems, 29 (2011), 213.   Google Scholar

[6]

K. Hiraide, Expansive homeomorphisms of compact surfaces are pseudo-Anosov,, Osaka J. Math., 27 (1990), 117.   Google Scholar

[7]

K. Kuratowski, "Topology,", Academic Press, (1966).   Google Scholar

[8]

J. Lewowicz, Expansive homeomorphisms of surfaces,, Bol. Soc. Bras. Mat. (N.S.), 20 (1989), 113.   Google Scholar

[9]

W. White, An Anosov translation,, in, (1973), 667.   Google Scholar

show all references

References:
[1]

L. Brouwer, Beweis des ebenen Translationssatzes,, Math. Ann., 72 (1912), 37.  doi: 10.1007/BF01456888.  Google Scholar

[2]

A. Fathi, Expansiveness, hyperbolicity and Hausdorff dimension,, Commun. Math. Phys., 126 (1989), 249.  doi: 10.1007/BF02125125.  Google Scholar

[3]

J. Franks, A new proof of the Brouwer plane translation theorem,, Ergod. Th. and Dynamic. Sys., 12 (1991), 217.   Google Scholar

[4]

Jorge Groisman, "Expansive Homeomorphisms of the Plane,", Ph.D. thesis, (2007).   Google Scholar

[5]

J. Groisman, Expansive homeomorphisms of the plane,, Discrete and Continuous Dynam. Systems, 29 (2011), 213.   Google Scholar

[6]

K. Hiraide, Expansive homeomorphisms of compact surfaces are pseudo-Anosov,, Osaka J. Math., 27 (1990), 117.   Google Scholar

[7]

K. Kuratowski, "Topology,", Academic Press, (1966).   Google Scholar

[8]

J. Lewowicz, Expansive homeomorphisms of surfaces,, Bol. Soc. Bras. Mat. (N.S.), 20 (1989), 113.   Google Scholar

[9]

W. White, An Anosov translation,, in, (1973), 667.   Google Scholar

[1]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[2]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[3]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[4]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[5]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[6]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[7]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[10]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[11]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[12]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[13]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[14]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[15]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[16]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[17]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[18]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[19]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]