May  2012, 32(5): 1763-1774. doi: 10.3934/dcds.2012.32.1763

Schubart-like orbits in the Newtonian collinear four-body problem: A variational proof

1. 

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States

Received  December 2010 Revised  May 2011 Published  January 2012

The Schubart-like orbits in the collinear four-body problem are similar to those discovered numerically by Schubart[12] in the collinear three-body problem. Schubart-like orbits are periodic solutions with exactly two binary collisions and one simultaneous binary collision per period. The proof of the existence of these orbits given in this paper is based on the direct method of Calculus of Variations. We exploit the variational structure of the problem and show that the minimizers of the Lagrangian action functional in a suitably chosen space have the desired properties.
Citation: Hsin-Yuan Huang. Schubart-like orbits in the Newtonian collinear four-body problem: A variational proof. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1763-1774. doi: 10.3934/dcds.2012.32.1763
References:
[1]

L. Bakker, T. Ouyang, D. Yan, S. Simmons and G. Roberts, Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem,, Celestial Mechanics and Dynamical Astronomy, 108 (2010), 147.  doi: 10.1007/s10569-010-9298-y.  Google Scholar

[2]

K.-C. Chen, Action-minimizing orbits in the parallelogram four-body problem with equal masses,, Arch. Ration. Mech. Anal., 158 (2001), 293.  doi: 10.1007/s002050100146.  Google Scholar

[3]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses,, Ann. of Math. (2), 152 (2000), 881.  doi: 10.2307/2661357.  Google Scholar

[4]

R. Easton, Regularization of vector fields by surgery,, J. Differential Equations, 10 (1971), 92.  doi: 10.1016/0022-0396(71)90098-2.  Google Scholar

[5]

M. ElBialy, Simultaneous binary collisions in the collinear $N$-body problem,, J. Differential Equations, 102 (1993), 209.  doi: 10.1006/jdeq.1993.1028.  Google Scholar

[6]

R. Martínez and C. Simó, The degree of differentiability of the regularization of simultaneous binary collisions in some $N$-body problems,, Nonlinearity, 13 (2000), 2107.  doi: 10.1088/0951-7715/13/6/312.  Google Scholar

[7]

R. McGehee, Triple collision in the collinear three-body problem,, Invent. Math., 27 (1974), 191.  doi: 10.1007/BF01390175.  Google Scholar

[8]

R. Moeckel, A topological existence proof for the Schubart orbits in the collinear three-body problem,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 609.  doi: 10.3934/dcdsb.2008.10.609.  Google Scholar

[9]

F. R. Moulton, The straight line solutions of the problem of $n$ bodies,, Ann. of Math. (2), 12 (1910), 1.  doi: 10.2307/2007159.  Google Scholar

[10]

T. Ouyang and D. Yan, Periodic solutions with alternating singularities in the collinear four-body problem,, Celestial Mech. Dynam. Astronom., 109 (2011), 229.   Google Scholar

[11]

G. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem,, Ergodic Theory Dynam. Systems, 27 (2007), 1947.  doi: 10.1017/S0143385707000284.  Google Scholar

[12]

J. Schubart, Numerische Aufsuchung periodischer Lösungen im Dreikörperproblem,, Astr. Nachr., 283 (1956), 17.  doi: 10.1002/asna.19562830105.  Google Scholar

[13]

M. Sekiguchi and K. Tanikawa, On the symmetric collinear four-body problem,, Publication of the Astronomical Society of Japan, 56 (2004), 235.   Google Scholar

[14]

M. Shibayama, Minimizing periodic orbits with regularizable collisions in the $n$-body problem,, Arch. Ration. Mech. Anal., 199 (2011), 821.  doi: 10.1007/s00205-010-0334-6.  Google Scholar

[15]

C. Simó and E. Lacomba, Regularization of simultaneous binary collisions in the $n$-body problem,, J. Differential Equations, 98 (1992), 241.  doi: 10.1016/0022-0396(92)90092-2.  Google Scholar

[16]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems," Fourth edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 34,, Springer-Verlag, (2008).   Google Scholar

[17]

W. Sweatman, The symmetrical one-dimensional Newtonian four-body problem: A numerical investigation,, The Restless Universe (Blair Atholl, 82 (2002), 179.  doi: 10.1023/A:1014599918133.  Google Scholar

[18]

W. Sweatman, A family of symmetrical Schubart-like interplay orbits and their stability in the one-dimensional four-body problem,, Celestial Mech. Dynam. Astronom., 94 (2006), 37.  doi: 10.1007/s10569-005-2289-8.  Google Scholar

[19]

A. Venturelli, "Application de la Minimisation de l'Action au Problḿe des $n$ Corps dans le Plan et dans l'Espace,", Thése de Doctorat, (2002).   Google Scholar

[20]

A. Venturelli, A variational proof of the existence of von Schubart's orbit,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 699.  doi: 10.3934/dcdsb.2008.10.699.  Google Scholar

[21]

A. Wintner, "The Analytical Foundations of Celestial Mechanics,", Princeton Mathematical Series, (1941).   Google Scholar

show all references

References:
[1]

L. Bakker, T. Ouyang, D. Yan, S. Simmons and G. Roberts, Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem,, Celestial Mechanics and Dynamical Astronomy, 108 (2010), 147.  doi: 10.1007/s10569-010-9298-y.  Google Scholar

[2]

K.-C. Chen, Action-minimizing orbits in the parallelogram four-body problem with equal masses,, Arch. Ration. Mech. Anal., 158 (2001), 293.  doi: 10.1007/s002050100146.  Google Scholar

[3]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses,, Ann. of Math. (2), 152 (2000), 881.  doi: 10.2307/2661357.  Google Scholar

[4]

R. Easton, Regularization of vector fields by surgery,, J. Differential Equations, 10 (1971), 92.  doi: 10.1016/0022-0396(71)90098-2.  Google Scholar

[5]

M. ElBialy, Simultaneous binary collisions in the collinear $N$-body problem,, J. Differential Equations, 102 (1993), 209.  doi: 10.1006/jdeq.1993.1028.  Google Scholar

[6]

R. Martínez and C. Simó, The degree of differentiability of the regularization of simultaneous binary collisions in some $N$-body problems,, Nonlinearity, 13 (2000), 2107.  doi: 10.1088/0951-7715/13/6/312.  Google Scholar

[7]

R. McGehee, Triple collision in the collinear three-body problem,, Invent. Math., 27 (1974), 191.  doi: 10.1007/BF01390175.  Google Scholar

[8]

R. Moeckel, A topological existence proof for the Schubart orbits in the collinear three-body problem,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 609.  doi: 10.3934/dcdsb.2008.10.609.  Google Scholar

[9]

F. R. Moulton, The straight line solutions of the problem of $n$ bodies,, Ann. of Math. (2), 12 (1910), 1.  doi: 10.2307/2007159.  Google Scholar

[10]

T. Ouyang and D. Yan, Periodic solutions with alternating singularities in the collinear four-body problem,, Celestial Mech. Dynam. Astronom., 109 (2011), 229.   Google Scholar

[11]

G. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem,, Ergodic Theory Dynam. Systems, 27 (2007), 1947.  doi: 10.1017/S0143385707000284.  Google Scholar

[12]

J. Schubart, Numerische Aufsuchung periodischer Lösungen im Dreikörperproblem,, Astr. Nachr., 283 (1956), 17.  doi: 10.1002/asna.19562830105.  Google Scholar

[13]

M. Sekiguchi and K. Tanikawa, On the symmetric collinear four-body problem,, Publication of the Astronomical Society of Japan, 56 (2004), 235.   Google Scholar

[14]

M. Shibayama, Minimizing periodic orbits with regularizable collisions in the $n$-body problem,, Arch. Ration. Mech. Anal., 199 (2011), 821.  doi: 10.1007/s00205-010-0334-6.  Google Scholar

[15]

C. Simó and E. Lacomba, Regularization of simultaneous binary collisions in the $n$-body problem,, J. Differential Equations, 98 (1992), 241.  doi: 10.1016/0022-0396(92)90092-2.  Google Scholar

[16]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems," Fourth edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 34,, Springer-Verlag, (2008).   Google Scholar

[17]

W. Sweatman, The symmetrical one-dimensional Newtonian four-body problem: A numerical investigation,, The Restless Universe (Blair Atholl, 82 (2002), 179.  doi: 10.1023/A:1014599918133.  Google Scholar

[18]

W. Sweatman, A family of symmetrical Schubart-like interplay orbits and their stability in the one-dimensional four-body problem,, Celestial Mech. Dynam. Astronom., 94 (2006), 37.  doi: 10.1007/s10569-005-2289-8.  Google Scholar

[19]

A. Venturelli, "Application de la Minimisation de l'Action au Problḿe des $n$ Corps dans le Plan et dans l'Espace,", Thése de Doctorat, (2002).   Google Scholar

[20]

A. Venturelli, A variational proof of the existence of von Schubart's orbit,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 699.  doi: 10.3934/dcdsb.2008.10.699.  Google Scholar

[21]

A. Wintner, "The Analytical Foundations of Celestial Mechanics,", Princeton Mathematical Series, (1941).   Google Scholar

[1]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[2]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[5]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[6]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[7]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[8]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[9]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[10]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[11]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[12]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[13]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[14]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[15]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[18]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[19]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[20]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]