• Previous Article
    Hamilton Jacobi Bellman equations in infinite dimensions with quadratic and superquadratic Hamiltonian
  • DCDS Home
  • This Issue
  • Next Article
    Asymptotic behavior of solutions to a one-dimensional full model for phase transitions with microscopic movements
January  2012, 32(1): 191-221. doi: 10.3934/dcds.2012.32.191

On the mass-critical generalized KdV equation

1. 

Mathematics Department, University of California, Los Angeles, Box 951555, Los Angeles, CA 90095, United States, United States

2. 

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon, Korea 305-701, South Korea

3. 

Institute for Mathematics and its Applications, University of Minnesota, 207 Church St. SE Minneapolis, MN 55455, United States

Received  August 2010 Revised  December 2010 Published  September 2011

We consider the mass-critical generalized Korteweg--de Vries equation $$(\partial_t + \partial_{xxx})u=\pm \partial_x(u^5)$$ for real-valued functions $u(t,x)$. We prove that if the global well-posedness and scattering conjecture for this equation failed, then, conditional on a positive answer to the global well-posedness and scattering conjecture for the mass-critical nonlinear Schrödinger equation $(-i\partial_t + \partial_{xx})u=\pm (|u|^4u)$, there exists a minimal-mass blowup solution to the mass-critical generalized KdV equation which is almost periodic modulo the symmetries of the equation. Moreover, we can guarantee that this minimal-mass blowup solution is either a self-similar solution, a soliton-like solution, or a double high-to-low frequency cascade solution.
Citation: Rowan Killip, Soonsik Kwon, Shuanglin Shao, Monica Visan. On the mass-critical generalized KdV equation. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 191-221. doi: 10.3934/dcds.2012.32.191
References:
[1]

P. Begout and A. Vargas, Mass concentration phenomena for the $L^2$-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 5257-5282. doi: 10.1090/S0002-9947-07-04250-X.

[2]

J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145-171. doi: 10.1090/S0894-0347-99-00283-0.

[3]

R. Carles and S. Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equation II, the $L^2$-critical case, Trans. Amer. Math. Soc., 359 (2007), 33-62. doi: 10.1090/S0002-9947-06-03955-9.

[4]

T. Cazenave and F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, in Nonlinear Semigroups, Partial Differential Equations and Attractors, Lecture Notes in Math., 1394 (1989), 18-29. doi: 10.1007/BFb0086749.

[5]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836. doi: 10.1016/0362-546X(90)90023-A.

[6]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 125 (2003), 1235-1293. doi: 10.1353/ajm.2003.0040.

[7]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Math. Res. Lett., 9 (2002), 659-682.

[8]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbbR^3$, Ann. of Math., 167 (2008), 767-865. doi: 10.4007/annals.2008.167.767.

[9]

D. de Silva, N. Pavlovič, G. Staffilani and N. Tzirakis, Global well-posedness and polynomial bounds for the defocusing $L^{2}$ -critical nonlinear Schrödinger equation in $\mathbbR$, Comm. Partial Differential Equations, 33 (2008), 1395-1429.

[10]

L. G. Farah, Global rough solutions to the critical generalized KdV equation, J. Differential Equations, 249 (2010), 1968-1985.

[11]

G. Fonseca, F. Linares and G. Ponce, Global existence for the critical generalized KdV equation, Proc. Amer. Math. Soc., 131 (2003), 1847-1855. doi: 10.1090/S0002-9939-02-06871-5.

[12]

G. Grillakis, On nonlinear Schrödinger equations, Comm. Partial Differential Equations, 25 (2000), 1827-1844.

[13]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud., 8 (1983), 93-128.

[14]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.

[15]

C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69. doi: 10.1512/iumj.1991.40.40003.

[16]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[17]

S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, 175 (2001), 353-392.

[18]

S. Keraani, On the blow-up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006), 171-192. doi: 10.1016/j.jfa.2005.10.005.

[19]

R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258. doi: 10.4171/JEMS/180.

[20]

R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424. doi: 10.1353/ajm.0.0107.

[21]

R. Killip and M. Visan, "Nonlinear Schrödinger Equations at Critical Regularity," Lecture notes prepared for Clay Mathematics Institute Summer School, Zürich, Switzerland, 2008.

[22]

R. Killip, M. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, 1 (2008), 229-266. doi: 10.2140/apde.2008.1.229.

[23]

F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc., 14 (2001), 555-578. doi: 10.1090/S0894-0347-01-00369-1.

[24]

F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices, (1998), 399-425. doi: 10.1155/S1073792898000270.

[25]

E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\mathbbR^{1+4}$, Amer. J. Math., 129 (2007), 1-60.

[26]

S. Shao, Maximizers for the Strichartz inequalities and the Sobolev-Strichartz inequalities for the Schrödinger equation, Electron. J. Differential Equations, (2009).

[27]

S. Shao, The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy Strichartz inequality, Anal. PDE, 2 (2009), 83-117. doi: 10.2140/apde.2009.2.83.

[28]

E. M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals," Princeton Mathematical Series, 43, 1993.

[29]

T. Tao, Global well-posedness and scattering for the higher-dimensional energy-critical non-linear Schrödinger equation for radial data, New York J. of Math., 11 (2005), 57-80.

[30]

T. Tao, "Nonlinear Dispersive Equations. Local and Global Analysis," CBMS Regional Conference Series in Mathematics, 106, 2006.

[31]

T. Tao, Two remarks on the generalised Korteweg-de Vries equation, Discrete and Continuous Dynamical Systems, 18 (2007), 1-14. doi: 10.3934/dcds.2007.18.1.

[32]

T. Tao, M. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.

[33]

T. Tao, M. Visan and X. Zhang, Minimal-mass blow-up solutions of the mass-critical NLS, Forum Math., 20 (2008), 881-919. doi: 10.1515/FORUM.2008.042.

[34]

T. Tao, M. Visan and X. Zhang, Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J., 140 (2007), 165-202. doi: 10.1215/S0012-7094-07-14015-8.

[35]

N. Tzirakis, The Cauchy problem for the semilinear quintic Schrödinger equation in one dimension, Differential Integral Equations, 18 (2005), 947-960.

[36]

M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374. doi: 10.1215/S0012-7094-07-13825-0.

[37]

M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (): 1982. 

[38]

X. Zhang, On the Cauchy problem of 3-D energy-critical Schrödinger equations with subcritical perturbations, J. Differential Equations, 230 (2006), 422-445.

show all references

References:
[1]

P. Begout and A. Vargas, Mass concentration phenomena for the $L^2$-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), 5257-5282. doi: 10.1090/S0002-9947-07-04250-X.

[2]

J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145-171. doi: 10.1090/S0894-0347-99-00283-0.

[3]

R. Carles and S. Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equation II, the $L^2$-critical case, Trans. Amer. Math. Soc., 359 (2007), 33-62. doi: 10.1090/S0002-9947-06-03955-9.

[4]

T. Cazenave and F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, in Nonlinear Semigroups, Partial Differential Equations and Attractors, Lecture Notes in Math., 1394 (1989), 18-29. doi: 10.1007/BFb0086749.

[5]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836. doi: 10.1016/0362-546X(90)90023-A.

[6]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 125 (2003), 1235-1293. doi: 10.1353/ajm.2003.0040.

[7]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Math. Res. Lett., 9 (2002), 659-682.

[8]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbbR^3$, Ann. of Math., 167 (2008), 767-865. doi: 10.4007/annals.2008.167.767.

[9]

D. de Silva, N. Pavlovič, G. Staffilani and N. Tzirakis, Global well-posedness and polynomial bounds for the defocusing $L^{2}$ -critical nonlinear Schrödinger equation in $\mathbbR$, Comm. Partial Differential Equations, 33 (2008), 1395-1429.

[10]

L. G. Farah, Global rough solutions to the critical generalized KdV equation, J. Differential Equations, 249 (2010), 1968-1985.

[11]

G. Fonseca, F. Linares and G. Ponce, Global existence for the critical generalized KdV equation, Proc. Amer. Math. Soc., 131 (2003), 1847-1855. doi: 10.1090/S0002-9939-02-06871-5.

[12]

G. Grillakis, On nonlinear Schrödinger equations, Comm. Partial Differential Equations, 25 (2000), 1827-1844.

[13]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud., 8 (1983), 93-128.

[14]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4.

[15]

C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69. doi: 10.1512/iumj.1991.40.40003.

[16]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620. doi: 10.1002/cpa.3160460405.

[17]

S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, 175 (2001), 353-392.

[18]

S. Keraani, On the blow-up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006), 171-192. doi: 10.1016/j.jfa.2005.10.005.

[19]

R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258. doi: 10.4171/JEMS/180.

[20]

R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424. doi: 10.1353/ajm.0.0107.

[21]

R. Killip and M. Visan, "Nonlinear Schrödinger Equations at Critical Regularity," Lecture notes prepared for Clay Mathematics Institute Summer School, Zürich, Switzerland, 2008.

[22]

R. Killip, M. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, 1 (2008), 229-266. doi: 10.2140/apde.2008.1.229.

[23]

F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc., 14 (2001), 555-578. doi: 10.1090/S0894-0347-01-00369-1.

[24]

F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices, (1998), 399-425. doi: 10.1155/S1073792898000270.

[25]

E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\mathbbR^{1+4}$, Amer. J. Math., 129 (2007), 1-60.

[26]

S. Shao, Maximizers for the Strichartz inequalities and the Sobolev-Strichartz inequalities for the Schrödinger equation, Electron. J. Differential Equations, (2009).

[27]

S. Shao, The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy Strichartz inequality, Anal. PDE, 2 (2009), 83-117. doi: 10.2140/apde.2009.2.83.

[28]

E. M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals," Princeton Mathematical Series, 43, 1993.

[29]

T. Tao, Global well-posedness and scattering for the higher-dimensional energy-critical non-linear Schrödinger equation for radial data, New York J. of Math., 11 (2005), 57-80.

[30]

T. Tao, "Nonlinear Dispersive Equations. Local and Global Analysis," CBMS Regional Conference Series in Mathematics, 106, 2006.

[31]

T. Tao, Two remarks on the generalised Korteweg-de Vries equation, Discrete and Continuous Dynamical Systems, 18 (2007), 1-14. doi: 10.3934/dcds.2007.18.1.

[32]

T. Tao, M. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.

[33]

T. Tao, M. Visan and X. Zhang, Minimal-mass blow-up solutions of the mass-critical NLS, Forum Math., 20 (2008), 881-919. doi: 10.1515/FORUM.2008.042.

[34]

T. Tao, M. Visan and X. Zhang, Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J., 140 (2007), 165-202. doi: 10.1215/S0012-7094-07-14015-8.

[35]

N. Tzirakis, The Cauchy problem for the semilinear quintic Schrödinger equation in one dimension, Differential Integral Equations, 18 (2005), 947-960.

[36]

M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374. doi: 10.1215/S0012-7094-07-13825-0.

[37]

M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (): 1982. 

[38]

X. Zhang, On the Cauchy problem of 3-D energy-critical Schrödinger equations with subcritical perturbations, J. Differential Equations, 230 (2006), 422-445.

[1]

Massimiliano Gubinelli. Rough solutions for the periodic Korteweg--de~Vries equation. Communications on Pure and Applied Analysis, 2012, 11 (2) : 709-733. doi: 10.3934/cpaa.2012.11.709

[2]

Belkacem Said-Houari. Long-time behavior of solutions of the generalized Korteweg--de Vries equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 245-252. doi: 10.3934/dcdsb.2016.21.245

[3]

Boling Guo, Zhaohui Huo. The global attractor of the damped, forced generalized Korteweg de Vries-Benjamin-Ono equation in $L^2$. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 121-136. doi: 10.3934/dcds.2006.16.121

[4]

Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control and Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45

[5]

M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22

[6]

John P. Albert. A uniqueness result for 2-soliton solutions of the Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3635-3670. doi: 10.3934/dcds.2019149

[7]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[8]

Zhaosheng Feng, Yu Huang. Approximate solution of the Burgers-Korteweg-de Vries equation. Communications on Pure and Applied Analysis, 2007, 6 (2) : 429-440. doi: 10.3934/cpaa.2007.6.429

[9]

Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509

[10]

Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655

[11]

Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069

[12]

Ahmat Mahamat Taboye, Mohamed Laabissi. Exponential stabilization of a linear Korteweg-de Vries equation with input saturation. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021052

[13]

Terence Tao. Two remarks on the generalised Korteweg de-Vries equation. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 1-14. doi: 10.3934/dcds.2007.18.1

[14]

Eduardo Cerpa, Emmanuelle Crépeau, Julie Valein. Boundary controllability of the Korteweg-de Vries equation on a tree-shaped network. Evolution Equations and Control Theory, 2020, 9 (3) : 673-692. doi: 10.3934/eect.2020028

[15]

Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061

[16]

Mudassar Imran, Youssef Raffoul, Muhammad Usman, Chi Zhang. A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 691-705. doi: 10.3934/dcdss.2018043

[17]

Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761

[18]

Roberto A. Capistrano-Filho, Shuming Sun, Bing-Yu Zhang. General boundary value problems of the Korteweg-de Vries equation on a bounded domain. Mathematical Control and Related Fields, 2018, 8 (3&4) : 583-605. doi: 10.3934/mcrf.2018024

[19]

Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097

[20]

Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure and Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (128)
  • HTML views (0)
  • Cited by (20)

[Back to Top]