• Previous Article
    Hamilton Jacobi Bellman equations in infinite dimensions with quadratic and superquadratic Hamiltonian
  • DCDS Home
  • This Issue
  • Next Article
    Asymptotic behavior of solutions to a one-dimensional full model for phase transitions with microscopic movements
January  2012, 32(1): 191-221. doi: 10.3934/dcds.2012.32.191

On the mass-critical generalized KdV equation

1. 

Mathematics Department, University of California, Los Angeles, Box 951555, Los Angeles, CA 90095, United States, United States

2. 

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon, Korea 305-701, South Korea

3. 

Institute for Mathematics and its Applications, University of Minnesota, 207 Church St. SE Minneapolis, MN 55455, United States

Received  August 2010 Revised  December 2010 Published  September 2011

We consider the mass-critical generalized Korteweg--de Vries equation $$(\partial_t + \partial_{xxx})u=\pm \partial_x(u^5)$$ for real-valued functions $u(t,x)$. We prove that if the global well-posedness and scattering conjecture for this equation failed, then, conditional on a positive answer to the global well-posedness and scattering conjecture for the mass-critical nonlinear Schrödinger equation $(-i\partial_t + \partial_{xx})u=\pm (|u|^4u)$, there exists a minimal-mass blowup solution to the mass-critical generalized KdV equation which is almost periodic modulo the symmetries of the equation. Moreover, we can guarantee that this minimal-mass blowup solution is either a self-similar solution, a soliton-like solution, or a double high-to-low frequency cascade solution.
Citation: Rowan Killip, Soonsik Kwon, Shuanglin Shao, Monica Visan. On the mass-critical generalized KdV equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 191-221. doi: 10.3934/dcds.2012.32.191
References:
[1]

P. Begout and A. Vargas, Mass concentration phenomena for the $L^2$-critical nonlinear Schrödinger equation,, Trans. Amer. Math. Soc., 359 (2007), 5257.  doi: 10.1090/S0002-9947-07-04250-X.  Google Scholar

[2]

J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case,, J. Amer. Math. Soc., 12 (1999), 145.  doi: 10.1090/S0894-0347-99-00283-0.  Google Scholar

[3]

R. Carles and S. Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equation II, the $L^2$-critical case,, Trans. Amer. Math. Soc., 359 (2007), 33.  doi: 10.1090/S0002-9947-06-03955-9.  Google Scholar

[4]

T. Cazenave and F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case,, in Nonlinear Semigroups, 1394 (1989), 18.  doi: 10.1007/BFb0086749.  Google Scholar

[5]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$,, Nonlinear Anal., 14 (1990), 807.  doi: 10.1016/0362-546X(90)90023-A.  Google Scholar

[6]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations,, Amer. J. Math., 125 (2003), 1235.  doi: 10.1353/ajm.2003.0040.  Google Scholar

[7]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation,, Math. Res. Lett., 9 (2002), 659.   Google Scholar

[8]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbbR^3$,, Ann. of Math., 167 (2008), 767.  doi: 10.4007/annals.2008.167.767.  Google Scholar

[9]

D. de Silva, N. Pavlovič, G. Staffilani and N. Tzirakis, Global well-posedness and polynomial bounds for the defocusing $L^{2}$ -critical nonlinear Schrödinger equation in $\mathbbR$,, Comm. Partial Differential Equations, 33 (2008), 1395.   Google Scholar

[10]

L. G. Farah, Global rough solutions to the critical generalized KdV equation,, J. Differential Equations, 249 (2010), 1968.   Google Scholar

[11]

G. Fonseca, F. Linares and G. Ponce, Global existence for the critical generalized KdV equation,, Proc. Amer. Math. Soc., 131 (2003), 1847.  doi: 10.1090/S0002-9939-02-06871-5.  Google Scholar

[12]

G. Grillakis, On nonlinear Schrödinger equations,, Comm. Partial Differential Equations, 25 (2000), 1827.   Google Scholar

[13]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation,, Studies in applied mathematics, 8 (1983), 93.   Google Scholar

[14]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case,, Invent. Math., 166 (2006), 645.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[15]

C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations,, Indiana Univ. Math. J., 40 (1991), 33.  doi: 10.1512/iumj.1991.40.40003.  Google Scholar

[16]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, Comm. Pure Appl. Math., 46 (1993), 527.  doi: 10.1002/cpa.3160460405.  Google Scholar

[17]

S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations,, J. Differential Equations, 175 (2001), 353.   Google Scholar

[18]

S. Keraani, On the blow-up phenomenon of the critical nonlinear Schrödinger equation,, J. Funct. Anal., 235 (2006), 171.  doi: 10.1016/j.jfa.2005.10.005.  Google Scholar

[19]

R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data,, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203.  doi: 10.4171/JEMS/180.  Google Scholar

[20]

R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher,, Amer. J. Math., 132 (2010), 361.  doi: 10.1353/ajm.0.0107.  Google Scholar

[21]

R. Killip and M. Visan, "Nonlinear Schrödinger Equations at Critical Regularity,", Lecture notes prepared for Clay Mathematics Institute Summer School, (2008).   Google Scholar

[22]

R. Killip, M. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher,, Anal. PDE, 1 (2008), 229.  doi: 10.2140/apde.2008.1.229.  Google Scholar

[23]

F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation,, J. Amer. Math. Soc., 14 (2001), 555.  doi: 10.1090/S0894-0347-01-00369-1.  Google Scholar

[24]

F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D,, Internat. Math. Res. Notices, (1998), 399.  doi: 10.1155/S1073792898000270.  Google Scholar

[25]

E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\mathbbR^{1+4}$,, Amer. J. Math., 129 (2007), 1.   Google Scholar

[26]

S. Shao, Maximizers for the Strichartz inequalities and the Sobolev-Strichartz inequalities for the Schrödinger equation,, Electron. J. Differential Equations, (2009).   Google Scholar

[27]

S. Shao, The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy Strichartz inequality,, Anal. PDE, 2 (2009), 83.  doi: 10.2140/apde.2009.2.83.  Google Scholar

[28]

E. M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton Mathematical Series, 43 (1993).   Google Scholar

[29]

T. Tao, Global well-posedness and scattering for the higher-dimensional energy-critical non-linear Schrödinger equation for radial data,, New York J. of Math., 11 (2005), 57.   Google Scholar

[30]

T. Tao, "Nonlinear Dispersive Equations. Local and Global Analysis,", CBMS Regional Conference Series in Mathematics, 106 (2006).   Google Scholar

[31]

T. Tao, Two remarks on the generalised Korteweg-de Vries equation,, Discrete and Continuous Dynamical Systems, 18 (2007), 1.  doi: 10.3934/dcds.2007.18.1.  Google Scholar

[32]

T. Tao, M. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities,, Comm. Partial Differential Equations, 32 (2007), 1281.   Google Scholar

[33]

T. Tao, M. Visan and X. Zhang, Minimal-mass blow-up solutions of the mass-critical NLS,, Forum Math., 20 (2008), 881.  doi: 10.1515/FORUM.2008.042.  Google Scholar

[34]

T. Tao, M. Visan and X. Zhang, Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation for radial data in high dimensions,, Duke Math. J., 140 (2007), 165.  doi: 10.1215/S0012-7094-07-14015-8.  Google Scholar

[35]

N. Tzirakis, The Cauchy problem for the semilinear quintic Schrödinger equation in one dimension,, Differential Integral Equations, 18 (2005), 947.   Google Scholar

[36]

M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions,, Duke Math. J., 138 (2007), 281.  doi: 10.1215/S0012-7094-07-13825-0.  Google Scholar

[37]

M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (): 1982.   Google Scholar

[38]

X. Zhang, On the Cauchy problem of 3-D energy-critical Schrödinger equations with subcritical perturbations,, J. Differential Equations, 230 (2006), 422.   Google Scholar

show all references

References:
[1]

P. Begout and A. Vargas, Mass concentration phenomena for the $L^2$-critical nonlinear Schrödinger equation,, Trans. Amer. Math. Soc., 359 (2007), 5257.  doi: 10.1090/S0002-9947-07-04250-X.  Google Scholar

[2]

J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case,, J. Amer. Math. Soc., 12 (1999), 145.  doi: 10.1090/S0894-0347-99-00283-0.  Google Scholar

[3]

R. Carles and S. Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equation II, the $L^2$-critical case,, Trans. Amer. Math. Soc., 359 (2007), 33.  doi: 10.1090/S0002-9947-06-03955-9.  Google Scholar

[4]

T. Cazenave and F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case,, in Nonlinear Semigroups, 1394 (1989), 18.  doi: 10.1007/BFb0086749.  Google Scholar

[5]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$,, Nonlinear Anal., 14 (1990), 807.  doi: 10.1016/0362-546X(90)90023-A.  Google Scholar

[6]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations,, Amer. J. Math., 125 (2003), 1235.  doi: 10.1353/ajm.2003.0040.  Google Scholar

[7]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation,, Math. Res. Lett., 9 (2002), 659.   Google Scholar

[8]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbbR^3$,, Ann. of Math., 167 (2008), 767.  doi: 10.4007/annals.2008.167.767.  Google Scholar

[9]

D. de Silva, N. Pavlovič, G. Staffilani and N. Tzirakis, Global well-posedness and polynomial bounds for the defocusing $L^{2}$ -critical nonlinear Schrödinger equation in $\mathbbR$,, Comm. Partial Differential Equations, 33 (2008), 1395.   Google Scholar

[10]

L. G. Farah, Global rough solutions to the critical generalized KdV equation,, J. Differential Equations, 249 (2010), 1968.   Google Scholar

[11]

G. Fonseca, F. Linares and G. Ponce, Global existence for the critical generalized KdV equation,, Proc. Amer. Math. Soc., 131 (2003), 1847.  doi: 10.1090/S0002-9939-02-06871-5.  Google Scholar

[12]

G. Grillakis, On nonlinear Schrödinger equations,, Comm. Partial Differential Equations, 25 (2000), 1827.   Google Scholar

[13]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation,, Studies in applied mathematics, 8 (1983), 93.   Google Scholar

[14]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case,, Invent. Math., 166 (2006), 645.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[15]

C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations,, Indiana Univ. Math. J., 40 (1991), 33.  doi: 10.1512/iumj.1991.40.40003.  Google Scholar

[16]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, Comm. Pure Appl. Math., 46 (1993), 527.  doi: 10.1002/cpa.3160460405.  Google Scholar

[17]

S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations,, J. Differential Equations, 175 (2001), 353.   Google Scholar

[18]

S. Keraani, On the blow-up phenomenon of the critical nonlinear Schrödinger equation,, J. Funct. Anal., 235 (2006), 171.  doi: 10.1016/j.jfa.2005.10.005.  Google Scholar

[19]

R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data,, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203.  doi: 10.4171/JEMS/180.  Google Scholar

[20]

R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher,, Amer. J. Math., 132 (2010), 361.  doi: 10.1353/ajm.0.0107.  Google Scholar

[21]

R. Killip and M. Visan, "Nonlinear Schrödinger Equations at Critical Regularity,", Lecture notes prepared for Clay Mathematics Institute Summer School, (2008).   Google Scholar

[22]

R. Killip, M. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher,, Anal. PDE, 1 (2008), 229.  doi: 10.2140/apde.2008.1.229.  Google Scholar

[23]

F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation,, J. Amer. Math. Soc., 14 (2001), 555.  doi: 10.1090/S0894-0347-01-00369-1.  Google Scholar

[24]

F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2D,, Internat. Math. Res. Notices, (1998), 399.  doi: 10.1155/S1073792898000270.  Google Scholar

[25]

E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\mathbbR^{1+4}$,, Amer. J. Math., 129 (2007), 1.   Google Scholar

[26]

S. Shao, Maximizers for the Strichartz inequalities and the Sobolev-Strichartz inequalities for the Schrödinger equation,, Electron. J. Differential Equations, (2009).   Google Scholar

[27]

S. Shao, The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy Strichartz inequality,, Anal. PDE, 2 (2009), 83.  doi: 10.2140/apde.2009.2.83.  Google Scholar

[28]

E. M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton Mathematical Series, 43 (1993).   Google Scholar

[29]

T. Tao, Global well-posedness and scattering for the higher-dimensional energy-critical non-linear Schrödinger equation for radial data,, New York J. of Math., 11 (2005), 57.   Google Scholar

[30]

T. Tao, "Nonlinear Dispersive Equations. Local and Global Analysis,", CBMS Regional Conference Series in Mathematics, 106 (2006).   Google Scholar

[31]

T. Tao, Two remarks on the generalised Korteweg-de Vries equation,, Discrete and Continuous Dynamical Systems, 18 (2007), 1.  doi: 10.3934/dcds.2007.18.1.  Google Scholar

[32]

T. Tao, M. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities,, Comm. Partial Differential Equations, 32 (2007), 1281.   Google Scholar

[33]

T. Tao, M. Visan and X. Zhang, Minimal-mass blow-up solutions of the mass-critical NLS,, Forum Math., 20 (2008), 881.  doi: 10.1515/FORUM.2008.042.  Google Scholar

[34]

T. Tao, M. Visan and X. Zhang, Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation for radial data in high dimensions,, Duke Math. J., 140 (2007), 165.  doi: 10.1215/S0012-7094-07-14015-8.  Google Scholar

[35]

N. Tzirakis, The Cauchy problem for the semilinear quintic Schrödinger equation in one dimension,, Differential Integral Equations, 18 (2005), 947.   Google Scholar

[36]

M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions,, Duke Math. J., 138 (2007), 281.  doi: 10.1215/S0012-7094-07-13825-0.  Google Scholar

[37]

M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (): 1982.   Google Scholar

[38]

X. Zhang, On the Cauchy problem of 3-D energy-critical Schrödinger equations with subcritical perturbations,, J. Differential Equations, 230 (2006), 422.   Google Scholar

[1]

Massimiliano Gubinelli. Rough solutions for the periodic Korteweg--de~Vries equation. Communications on Pure & Applied Analysis, 2012, 11 (2) : 709-733. doi: 10.3934/cpaa.2012.11.709

[2]

Boling Guo, Zhaohui Huo. The global attractor of the damped, forced generalized Korteweg de Vries-Benjamin-Ono equation in $L^2$. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 121-136. doi: 10.3934/dcds.2006.16.121

[3]

Belkacem Said-Houari. Long-time behavior of solutions of the generalized Korteweg--de Vries equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 245-252. doi: 10.3934/dcdsb.2016.21.245

[4]

Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control & Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45

[5]

M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22

[6]

John P. Albert. A uniqueness result for 2-soliton solutions of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3635-3670. doi: 10.3934/dcds.2019149

[7]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[8]

Zhaosheng Feng, Yu Huang. Approximate solution of the Burgers-Korteweg-de Vries equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 429-440. doi: 10.3934/cpaa.2007.6.429

[9]

Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509

[10]

Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655

[11]

Terence Tao. Two remarks on the generalised Korteweg de-Vries equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 1-14. doi: 10.3934/dcds.2007.18.1

[12]

Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069

[13]

Mudassar Imran, Youssef Raffoul, Muhammad Usman, Chi Zhang. A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 691-705. doi: 10.3934/dcdss.2018043

[14]

Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061

[15]

Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761

[16]

Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097

[17]

Anne de Bouard, Eric Gautier. Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 857-871. doi: 10.3934/dcds.2010.26.857

[18]

Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure & Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046

[19]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation. Networks & Heterogeneous Media, 2016, 11 (2) : 281-300. doi: 10.3934/nhm.2016.11.281

[20]

Roberto A. Capistrano-Filho, Shuming Sun, Bing-Yu Zhang. General boundary value problems of the Korteweg-de Vries equation on a bounded domain. Mathematical Control & Related Fields, 2018, 8 (3&4) : 583-605. doi: 10.3934/mcrf.2018024

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (14)

[Back to Top]