Citation: |
[1] |
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56 (electronic). |
[2] |
A. Bressan, A contractive metric for systems of conservation laws with coinciding shock and rarefaction curves, J. Differential Equations, 106 (1993), 332-366.doi: 10.1006/jdeq.1993.1111. |
[3] |
A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem," Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000. |
[4] |
A. Bressan and R. M. Colombo, The semigroup generated by $2\times 2$ conservation laws, Arch. Rational Mech. Anal., 133 (1995), 1-75.doi: 10.1007/BF00375350. |
[5] |
A. Bressan, G. Crasta and B. Piccoli, Well-posedness of the Cauchy problem for $n\times n$ systems of conservation laws, Mem. Amer. Math. Soc., 146 (2000), viii+134 pp. |
[6] |
G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886 (electronic).doi: 10.1137/S0036141004402683. |
[7] |
R. M. Colombo, P. Goatin and B. Piccoli, Road network with phase transitions, J. Hyperbolic Differ. Equ., 7 (2010), 85-106.doi: 10.1142/S0219891610002025. |
[8] |
C. D'apice, R. Manzo and B. Piccoli, Packet flow on telecommunication networks, SIAM J. Math. Anal., 38 (2006), 717-740 (electronic).doi: 10.1137/050631628. |
[9] |
M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model, Comm. Partial Differential Equations, 31 (2006), 243-275. |
[10] |
M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models," AIMS Series on Applied Mathematics, 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. |
[11] |
M. Garavello and B. Piccoli, Conservation laws on complex networks, Ann. H. Poincaré, 26 (2009), 1925-1951. |
[12] |
M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, preprint, 2010. |
[13] |
S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks, Commun. Math. Sci., 4 (2006), 315-330. |
[14] |
M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations, SIAM J. Math. Anal., 39 (2007), 160-173.doi: 10.1137/060659478. |
[15] |
M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826 (electronic). |
[16] |
M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow, Netw. Heterog. Media, 1 (2006), 275-294 (electronic).doi: 10.3934/nhm.2006.1.275. |
[17] |
M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616.doi: 10.1137/05062617X. |
[18] |
H. Holden and N. H. Risebro, "Front Tracking for Hyperbolic Conservation Laws," Applied Mathematical Sciences, 152, Springer-Verlag, New York, 2002. |
[19] |
M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345. |
[20] |
A. Marigo and B. Piccoli, A fluid dynamic model for $T$-junctions, SIAM J. Math. Anal., 39 (2008), 2016-2032.doi: 10.1137/060673060. |
[21] |
P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.doi: 10.1287/opre.4.1.42. |
[22] |
D. Sun, I. S. Strub and A. M. Bayen, Comparison of the performance of four Eulerian network flow models for strategic air traffic management, Netw. Heterog. Media, 2 (2007), 569-595.doi: 10.3934/nhm.2007.2.569. |