June  2012, 32(6): 1915-1938. doi: 10.3934/dcds.2012.32.1915

The Cauchy problem at a node with buffer

1. 

Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale “A. Avogadro”, viale T. Michel 11, 15121 Alessandria, Italy

2. 

INRIA Sophia Antipolis - Méditerranée, EPI OPALE, 2004, route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex, France

Received  January 2011 Revised  October 2011 Published  February 2012

We consider the Lighthill-Whitham-Richards traffic flow model on a network composed by an arbitrary number of incoming and outgoing arcs connected together by a node with a buffer. Similar to [15], we define the solution to the Riemann problem at the node and we prove existence and well posedness of solutions to the Cauchy problem, by using the wave-front tracking technique and the generalized tangent vectors.
Citation: Mauro Garavello, Paola Goatin. The Cauchy problem at a node with buffer. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1915-1938. doi: 10.3934/dcds.2012.32.1915
References:
[1]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41.   Google Scholar

[2]

A. Bressan, A contractive metric for systems of conservation laws with coinciding shock and rarefaction curves,, J. Differential Equations, 106 (1993), 332.  doi: 10.1006/jdeq.1993.1111.  Google Scholar

[3]

A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,", Oxford Lecture Series in Mathematics and its Applications, 20 (2000).   Google Scholar

[4]

A. Bressan and R. M. Colombo, The semigroup generated by $2\times 2$ conservation laws,, Arch. Rational Mech. Anal., 133 (1995), 1.  doi: 10.1007/BF00375350.  Google Scholar

[5]

A. Bressan, G. Crasta and B. Piccoli, Well-posedness of the Cauchy problem for $n\times n$ systems of conservation laws,, Mem. Amer. Math. Soc., 146 (2000).   Google Scholar

[6]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862.  doi: 10.1137/S0036141004402683.  Google Scholar

[7]

R. M. Colombo, P. Goatin and B. Piccoli, Road network with phase transitions,, J. Hyperbolic Differ. Equ., 7 (2010), 85.  doi: 10.1142/S0219891610002025.  Google Scholar

[8]

C. D'apice, R. Manzo and B. Piccoli, Packet flow on telecommunication networks,, SIAM J. Math. Anal., 38 (2006), 717.  doi: 10.1137/050631628.  Google Scholar

[9]

M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model,, Comm. Partial Differential Equations, 31 (2006), 243.   Google Scholar

[10]

M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models,", AIMS Series on Applied Mathematics, 1 (2006).   Google Scholar

[11]

M. Garavello and B. Piccoli, Conservation laws on complex networks,, Ann. H. Poincaré, 26 (2009), 1925.   Google Scholar

[12]

M. Garavello and B. Piccoli, A multibuffer model for LWR road networks,, preprint, (2010).   Google Scholar

[13]

S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks,, Commun. Math. Sci., 4 (2006), 315.   Google Scholar

[14]

M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations,, SIAM J. Math. Anal., 39 (2007), 160.  doi: 10.1137/060659478.  Google Scholar

[15]

M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow,, Netw. Heterog. Media, 4 (2009), 813.   Google Scholar

[16]

M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow,, Netw. Heterog. Media, 1 (2006), 275.  doi: 10.3934/nhm.2006.1.275.  Google Scholar

[17]

M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow,, SIAM J. Math. Anal., 38 (2006), 595.  doi: 10.1137/05062617X.  Google Scholar

[18]

H. Holden and N. H. Risebro, "Front Tracking for Hyperbolic Conservation Laws,", Applied Mathematical Sciences, 152 (2002).   Google Scholar

[19]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317.   Google Scholar

[20]

A. Marigo and B. Piccoli, A fluid dynamic model for $T$-junctions,, SIAM J. Math. Anal., 39 (2008), 2016.  doi: 10.1137/060673060.  Google Scholar

[21]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[22]

D. Sun, I. S. Strub and A. M. Bayen, Comparison of the performance of four Eulerian network flow models for strategic air traffic management,, Netw. Heterog. Media, 2 (2007), 569.  doi: 10.3934/nhm.2007.2.569.  Google Scholar

show all references

References:
[1]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41.   Google Scholar

[2]

A. Bressan, A contractive metric for systems of conservation laws with coinciding shock and rarefaction curves,, J. Differential Equations, 106 (1993), 332.  doi: 10.1006/jdeq.1993.1111.  Google Scholar

[3]

A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,", Oxford Lecture Series in Mathematics and its Applications, 20 (2000).   Google Scholar

[4]

A. Bressan and R. M. Colombo, The semigroup generated by $2\times 2$ conservation laws,, Arch. Rational Mech. Anal., 133 (1995), 1.  doi: 10.1007/BF00375350.  Google Scholar

[5]

A. Bressan, G. Crasta and B. Piccoli, Well-posedness of the Cauchy problem for $n\times n$ systems of conservation laws,, Mem. Amer. Math. Soc., 146 (2000).   Google Scholar

[6]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862.  doi: 10.1137/S0036141004402683.  Google Scholar

[7]

R. M. Colombo, P. Goatin and B. Piccoli, Road network with phase transitions,, J. Hyperbolic Differ. Equ., 7 (2010), 85.  doi: 10.1142/S0219891610002025.  Google Scholar

[8]

C. D'apice, R. Manzo and B. Piccoli, Packet flow on telecommunication networks,, SIAM J. Math. Anal., 38 (2006), 717.  doi: 10.1137/050631628.  Google Scholar

[9]

M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model,, Comm. Partial Differential Equations, 31 (2006), 243.   Google Scholar

[10]

M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models,", AIMS Series on Applied Mathematics, 1 (2006).   Google Scholar

[11]

M. Garavello and B. Piccoli, Conservation laws on complex networks,, Ann. H. Poincaré, 26 (2009), 1925.   Google Scholar

[12]

M. Garavello and B. Piccoli, A multibuffer model for LWR road networks,, preprint, (2010).   Google Scholar

[13]

S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks,, Commun. Math. Sci., 4 (2006), 315.   Google Scholar

[14]

M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations,, SIAM J. Math. Anal., 39 (2007), 160.  doi: 10.1137/060659478.  Google Scholar

[15]

M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow,, Netw. Heterog. Media, 4 (2009), 813.   Google Scholar

[16]

M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow,, Netw. Heterog. Media, 1 (2006), 275.  doi: 10.3934/nhm.2006.1.275.  Google Scholar

[17]

M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow,, SIAM J. Math. Anal., 38 (2006), 595.  doi: 10.1137/05062617X.  Google Scholar

[18]

H. Holden and N. H. Risebro, "Front Tracking for Hyperbolic Conservation Laws,", Applied Mathematical Sciences, 152 (2002).   Google Scholar

[19]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317.   Google Scholar

[20]

A. Marigo and B. Piccoli, A fluid dynamic model for $T$-junctions,, SIAM J. Math. Anal., 39 (2008), 2016.  doi: 10.1137/060673060.  Google Scholar

[21]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[22]

D. Sun, I. S. Strub and A. M. Bayen, Comparison of the performance of four Eulerian network flow models for strategic air traffic management,, Netw. Heterog. Media, 2 (2007), 569.  doi: 10.3934/nhm.2007.2.569.  Google Scholar

[1]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[2]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[3]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[4]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[5]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[6]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[7]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[8]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[9]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[10]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[11]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]