June  2012, 32(6): 1915-1938. doi: 10.3934/dcds.2012.32.1915

The Cauchy problem at a node with buffer

1. 

Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale “A. Avogadro”, viale T. Michel 11, 15121 Alessandria, Italy

2. 

INRIA Sophia Antipolis - Méditerranée, EPI OPALE, 2004, route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex, France

Received  January 2011 Revised  October 2011 Published  February 2012

We consider the Lighthill-Whitham-Richards traffic flow model on a network composed by an arbitrary number of incoming and outgoing arcs connected together by a node with a buffer. Similar to [15], we define the solution to the Riemann problem at the node and we prove existence and well posedness of solutions to the Cauchy problem, by using the wave-front tracking technique and the generalized tangent vectors.
Citation: Mauro Garavello, Paola Goatin. The Cauchy problem at a node with buffer. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1915-1938. doi: 10.3934/dcds.2012.32.1915
References:
[1]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41. Google Scholar

[2]

A. Bressan, A contractive metric for systems of conservation laws with coinciding shock and rarefaction curves,, J. Differential Equations, 106 (1993), 332. doi: 10.1006/jdeq.1993.1111. Google Scholar

[3]

A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,", Oxford Lecture Series in Mathematics and its Applications, 20 (2000). Google Scholar

[4]

A. Bressan and R. M. Colombo, The semigroup generated by $2\times 2$ conservation laws,, Arch. Rational Mech. Anal., 133 (1995), 1. doi: 10.1007/BF00375350. Google Scholar

[5]

A. Bressan, G. Crasta and B. Piccoli, Well-posedness of the Cauchy problem for $n\times n$ systems of conservation laws,, Mem. Amer. Math. Soc., 146 (2000). Google Scholar

[6]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862. doi: 10.1137/S0036141004402683. Google Scholar

[7]

R. M. Colombo, P. Goatin and B. Piccoli, Road network with phase transitions,, J. Hyperbolic Differ. Equ., 7 (2010), 85. doi: 10.1142/S0219891610002025. Google Scholar

[8]

C. D'apice, R. Manzo and B. Piccoli, Packet flow on telecommunication networks,, SIAM J. Math. Anal., 38 (2006), 717. doi: 10.1137/050631628. Google Scholar

[9]

M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model,, Comm. Partial Differential Equations, 31 (2006), 243. Google Scholar

[10]

M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models,", AIMS Series on Applied Mathematics, 1 (2006). Google Scholar

[11]

M. Garavello and B. Piccoli, Conservation laws on complex networks,, Ann. H. Poincaré, 26 (2009), 1925. Google Scholar

[12]

M. Garavello and B. Piccoli, A multibuffer model for LWR road networks,, preprint, (2010). Google Scholar

[13]

S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks,, Commun. Math. Sci., 4 (2006), 315. Google Scholar

[14]

M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations,, SIAM J. Math. Anal., 39 (2007), 160. doi: 10.1137/060659478. Google Scholar

[15]

M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow,, Netw. Heterog. Media, 4 (2009), 813. Google Scholar

[16]

M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow,, Netw. Heterog. Media, 1 (2006), 275. doi: 10.3934/nhm.2006.1.275. Google Scholar

[17]

M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow,, SIAM J. Math. Anal., 38 (2006), 595. doi: 10.1137/05062617X. Google Scholar

[18]

H. Holden and N. H. Risebro, "Front Tracking for Hyperbolic Conservation Laws,", Applied Mathematical Sciences, 152 (2002). Google Scholar

[19]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317. Google Scholar

[20]

A. Marigo and B. Piccoli, A fluid dynamic model for $T$-junctions,, SIAM J. Math. Anal., 39 (2008), 2016. doi: 10.1137/060673060. Google Scholar

[21]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42. Google Scholar

[22]

D. Sun, I. S. Strub and A. M. Bayen, Comparison of the performance of four Eulerian network flow models for strategic air traffic management,, Netw. Heterog. Media, 2 (2007), 569. doi: 10.3934/nhm.2007.2.569. Google Scholar

show all references

References:
[1]

M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41. Google Scholar

[2]

A. Bressan, A contractive metric for systems of conservation laws with coinciding shock and rarefaction curves,, J. Differential Equations, 106 (1993), 332. doi: 10.1006/jdeq.1993.1111. Google Scholar

[3]

A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem,", Oxford Lecture Series in Mathematics and its Applications, 20 (2000). Google Scholar

[4]

A. Bressan and R. M. Colombo, The semigroup generated by $2\times 2$ conservation laws,, Arch. Rational Mech. Anal., 133 (1995), 1. doi: 10.1007/BF00375350. Google Scholar

[5]

A. Bressan, G. Crasta and B. Piccoli, Well-posedness of the Cauchy problem for $n\times n$ systems of conservation laws,, Mem. Amer. Math. Soc., 146 (2000). Google Scholar

[6]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862. doi: 10.1137/S0036141004402683. Google Scholar

[7]

R. M. Colombo, P. Goatin and B. Piccoli, Road network with phase transitions,, J. Hyperbolic Differ. Equ., 7 (2010), 85. doi: 10.1142/S0219891610002025. Google Scholar

[8]

C. D'apice, R. Manzo and B. Piccoli, Packet flow on telecommunication networks,, SIAM J. Math. Anal., 38 (2006), 717. doi: 10.1137/050631628. Google Scholar

[9]

M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model,, Comm. Partial Differential Equations, 31 (2006), 243. Google Scholar

[10]

M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models,", AIMS Series on Applied Mathematics, 1 (2006). Google Scholar

[11]

M. Garavello and B. Piccoli, Conservation laws on complex networks,, Ann. H. Poincaré, 26 (2009), 1925. Google Scholar

[12]

M. Garavello and B. Piccoli, A multibuffer model for LWR road networks,, preprint, (2010). Google Scholar

[13]

S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks,, Commun. Math. Sci., 4 (2006), 315. Google Scholar

[14]

M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations,, SIAM J. Math. Anal., 39 (2007), 160. doi: 10.1137/060659478. Google Scholar

[15]

M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow,, Netw. Heterog. Media, 4 (2009), 813. Google Scholar

[16]

M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow,, Netw. Heterog. Media, 1 (2006), 275. doi: 10.3934/nhm.2006.1.275. Google Scholar

[17]

M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow,, SIAM J. Math. Anal., 38 (2006), 595. doi: 10.1137/05062617X. Google Scholar

[18]

H. Holden and N. H. Risebro, "Front Tracking for Hyperbolic Conservation Laws,", Applied Mathematical Sciences, 152 (2002). Google Scholar

[19]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317. Google Scholar

[20]

A. Marigo and B. Piccoli, A fluid dynamic model for $T$-junctions,, SIAM J. Math. Anal., 39 (2008), 2016. doi: 10.1137/060673060. Google Scholar

[21]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42. Google Scholar

[22]

D. Sun, I. S. Strub and A. M. Bayen, Comparison of the performance of four Eulerian network flow models for strategic air traffic management,, Netw. Heterog. Media, 2 (2007), 569. doi: 10.3934/nhm.2007.2.569. Google Scholar

[1]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[2]

Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic & Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311

[3]

Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435

[4]

Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks & Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028

[5]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[6]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[7]

Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751

[8]

Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks. Networks & Heterogeneous Media, 2007, 2 (2) : 227-253. doi: 10.3934/nhm.2007.2.227

[9]

Marte Godvik, Harald Hanche-Olsen. Car-following and the macroscopic Aw-Rascle traffic flow model. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 279-303. doi: 10.3934/dcdsb.2010.13.279

[10]

Mohamed Benyahia, Massimiliano D. Rosini. A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks & Heterogeneous Media, 2017, 12 (2) : 297-317. doi: 10.3934/nhm.2017013

[11]

Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control & Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401

[12]

Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks & Heterogeneous Media, 2017, 12 (2) : 245-258. doi: 10.3934/nhm.2017010

[13]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

[14]

Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra. Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks & Heterogeneous Media, 2013, 8 (4) : 969-984. doi: 10.3934/nhm.2013.8.969

[15]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[16]

Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107

[17]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[18]

Darko Mitrovic, Ivan Ivec. A generalization of $H$-measures and application on purely fractional scalar conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1617-1627. doi: 10.3934/cpaa.2011.10.1617

[19]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[20]

Debora Amadori, Wen Shen. Front tracking approximations for slow erosion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1481-1502. doi: 10.3934/dcds.2012.32.1481

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]