\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Cauchy problem at a node with buffer

Abstract / Introduction Related Papers Cited by
  • We consider the Lighthill-Whitham-Richards traffic flow model on a network composed by an arbitrary number of incoming and outgoing arcs connected together by a node with a buffer. Similar to [15], we define the solution to the Riemann problem at the node and we prove existence and well posedness of solutions to the Cauchy problem, by using the wave-front tracking technique and the generalized tangent vectors.
    Mathematics Subject Classification: Primary: 36L65; Secondary: 90B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56 (electronic).

    [2]

    A. Bressan, A contractive metric for systems of conservation laws with coinciding shock and rarefaction curves, J. Differential Equations, 106 (1993), 332-366.doi: 10.1006/jdeq.1993.1111.

    [3]

    A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem," Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000.

    [4]

    A. Bressan and R. M. Colombo, The semigroup generated by $2\times 2$ conservation laws, Arch. Rational Mech. Anal., 133 (1995), 1-75.doi: 10.1007/BF00375350.

    [5]

    A. Bressan, G. Crasta and B. Piccoli, Well-posedness of the Cauchy problem for $n\times n$ systems of conservation laws, Mem. Amer. Math. Soc., 146 (2000), viii+134 pp.

    [6]

    G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886 (electronic).doi: 10.1137/S0036141004402683.

    [7]

    R. M. Colombo, P. Goatin and B. Piccoli, Road network with phase transitions, J. Hyperbolic Differ. Equ., 7 (2010), 85-106.doi: 10.1142/S0219891610002025.

    [8]

    C. D'apice, R. Manzo and B. Piccoli, Packet flow on telecommunication networks, SIAM J. Math. Anal., 38 (2006), 717-740 (electronic).doi: 10.1137/050631628.

    [9]

    M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model, Comm. Partial Differential Equations, 31 (2006), 243-275.

    [10]

    M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models," AIMS Series on Applied Mathematics, 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.

    [11]

    M. Garavello and B. Piccoli, Conservation laws on complex networks, Ann. H. Poincaré, 26 (2009), 1925-1951.

    [12]

    M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, preprint, 2010.

    [13]

    S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks, Commun. Math. Sci., 4 (2006), 315-330.

    [14]

    M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations, SIAM J. Math. Anal., 39 (2007), 160-173.doi: 10.1137/060659478.

    [15]

    M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826 (electronic).

    [16]

    M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow, Netw. Heterog. Media, 1 (2006), 275-294 (electronic).doi: 10.3934/nhm.2006.1.275.

    [17]

    M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616.doi: 10.1137/05062617X.

    [18]

    H. Holden and N. H. Risebro, "Front Tracking for Hyperbolic Conservation Laws," Applied Mathematical Sciences, 152, Springer-Verlag, New York, 2002.

    [19]

    M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.

    [20]

    A. Marigo and B. Piccoli, A fluid dynamic model for $T$-junctions, SIAM J. Math. Anal., 39 (2008), 2016-2032.doi: 10.1137/060673060.

    [21]

    P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.doi: 10.1287/opre.4.1.42.

    [22]

    D. Sun, I. S. Strub and A. M. Bayen, Comparison of the performance of four Eulerian network flow models for strategic air traffic management, Netw. Heterog. Media, 2 (2007), 569-595.doi: 10.3934/nhm.2007.2.569.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(100) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return