-
Previous Article
A profinite group invariant for hyperbolic toral automorphisms
- DCDS Home
- This Issue
-
Next Article
The Cauchy problem at a node with buffer
Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes
1. | Laboratoire de Mathématiques CNRS UMR 6623, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex |
2. | UPMC Univ Paris 06 and CNRS UMR 7598, Laboratoire J.-L. Lions, 75005 Paris, France |
The interpretation of the non-conservative product "$ u(t,x) \, \delta_0(x)$" follows the analysis of [30]; we can describe the associated interface coupling in terms of one-sided traces on the interface. Well-posedness is established using the tools of the theory of conservation laws with discontinuous flux ([4]).
For proving existence and for practical computation of solutions, we construct a finite volume scheme, which turns out to be a well-balanced scheme and which allows a simple and efficient treatment of the interface coupling. Numerical illustrations are given.
References:
[1] |
D. Amadori, L. Gosse and G. Guerra, Godunov-type approximation for a general resonant balance law with large data, J. Differ. Equ., 198 (2004), 233-274.
doi: 10.1016/j.jde.2003.10.004. |
[2] |
B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numer. Math., 115 (2010), 609-645.
doi: 10.1007/s00211-009-0286-7. |
[3] |
B. Andreianov, K. H. Karlsen and N. H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux, Netw. Heterog. Media, 5 (2010), 617-633. |
[4] |
B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), 27-86.
doi: 10.1007/s00205-010-0389-4. |
[5] |
B. Andreianov, F. Lagoutière, N. Seguin and T. Takahashi, Small solids in an inviscid fluid, Netw. Heter. Media, 5 (2010), 385-404. |
[6] |
B. Andreianov, F. Lagoutière, N. Seguin and T. Takahashi, Well-posedness for a one-dimensional fluid-particle interaction model,, In preparation., ().
|
[7] |
Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions, J. Hyperbolic Differ. Equ., 2 (2005), 783-837.
doi: 10.1142/S0219891605000622. |
[8] |
E. Audusse and B. Perthame, Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253-265. |
[9] |
F. Bachmann, "Équations Hyperboliques Scalaires à Flux Discontinu,'' Ph.D thesis, Université de Provence, France, 2005. |
[10] |
B. Boutin, F. Coquel and E. Godlewski, Dafermos regularization for interface coupling of conservation laws, in "Hyperbolic Problems: Theory, Numerics, Applications,'' Springer, Berlin, (2008), 567-575.
doi: 10.1007/978-3-540-75712-2_55. |
[11] |
R. Bürger, A. García, K. H. Karlsen and J. D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux, J. Engrg. Math., 60 (2008), 387-425. |
[12] |
P. Baiti and H. K. Jenssen, Well-posedness for a class of $2\times2$ conservation laws with $L^\infty$ data, J. Differ. Equ., 140 (1997), 161-185.
doi: 10.1006/jdeq.1997.3308. |
[13] |
R. Bürger, K. H. Karlsen and J. D. Towers, An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal., 47 (2009), 1684-1712. |
[14] |
B. Boutin, "Couplage de Lois de Conservation Scalaires par une Régularisation à la Dafermos,'' Master's thesis, Université Pierre et Marie Curie-Paris 6, 2006. |
[15] |
R. Botchorishvili, B. Perthame and A. Vasseur, Equilibrium schemes for scalar conservation laws with stiff sources, Math. Comp., 72 (2003), 131-157.
doi: 10.1090/S0025-5718-01-01371-0. |
[16] |
R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differ. Equ., 234 (2007), 654-675.
doi: 10.1016/j.jde.2006.10.014. |
[17] |
A. Chinnayya, A.-Y. LeRoux and N. Seguin, A well-balanced numerical scheme for the approximation of the shallow-water equations with topography: The resonance phenomenon, Int. J. Finite Volumes, 1 (2004), 33 pp. |
[18] |
M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. AMS, 78 (1980), 385-390. |
[19] |
R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in "Handbook of Numerical Analysis,'' Vol. VII, North-Holland, Amsterdam, (2000), 713-1020. |
[20] |
L. Gosse and A.-Y. LeRoux, Un schéma-équilibre adapté aux lois de conservation scalaires non-homogènes, C. R. Acad. Sci. Paris Sér. I Math., 323 (1996), 543-546. |
[21] |
J. M. Greenberg and A.-Y. LeRoux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33 (1996), 1-16.
doi: 10.1137/0733001. |
[22] |
P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 881-902. |
[23] |
L. Gosse, Localization effects and measure source terms in numerical schemes for balance laws, Math. Comp., 71 (2002), 553-582.
doi: 10.1090/S0025-5718-01-01354-0. |
[24] |
E. Godlewski and P.-A. Raviart, "Hyperbolic Systems of Conservation Laws,'' Mathématiques & Applications (Paris) [Mathematics and Applications], 3/4, Ellipses, Paris, 1991. |
[25] |
L. Gosse and G. Toscani, Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes, SIAM J. Numer. Anal., 41 (2003), 641-658.
doi: 10.1137/S0036142901399392. |
[26] |
G. Guerra, Well-posedness for a scalar conservation law with singular nonconservative source, J. Differ. Equ., 206 (2004), 438-469.
doi: 10.1016/j.jde.2004.04.008. |
[27] |
E. Isaacson and B. Temple, Convergence of the $2\times 2$ Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math., 55 (1995), 625-640.
doi: 10.1137/S0036139992240711. |
[28] |
S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (123) (1970), 228-255. |
[29] |
A.-Y. LeRoux, Riemann solvers for some hyperbolic problems with a source term, In "Actes du 30ème Congrès d'Analyse Numérique: CANum '98'' (Arles, 1998), ESAIM Proc., 6, Soc. Math. Appl. Indust., Paris, (1999), 75-90. |
[30] |
F. Lagoutière, N. Seguin and T. Takahashi, A simple 1D model of inviscid fluid-solid interaction, J. Differ. Equ., 245 (2008), 3503-3544. |
[31] |
R. J. LeVeque and B. Temple, Stability of Godunov's method for a class of $2\times 2$ systems of conservation laws, Trans. Amer. Math. Soc., 288 (1985), 115-123.
doi: 10.2307/2000429. |
[32] |
P. G. LeFloch and A. E. Tzavaras, Representation of weak limits and definition of nonconservative products, SIAM J. Math. Anal., 30 (1999), 1309-1342.
doi: 10.1137/S0036141098341794. |
[33] |
E. Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., 4 (2007), 729-770.
doi: 10.1142/S0219891607001343. |
[34] |
N. Seguin and J. Vovelle, Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients, Math. Models Methods Appl. Sci., 13 (2003), 221-257.
doi: 10.1142/S0218202503002477. |
[35] |
B. Temple, Global solution of the Cauchy problem for a class of $2\times 2$ nonstrictly hyperbolic conservation laws, Adv. in Appl. Math., 3 (1982), 335-375.
doi: 10.1016/S0196-8858(82)80010-9. |
[36] |
A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 160 (2001), 181-193.
doi: 10.1007/s002050100157. |
[37] |
A. Vasseur, Well-posedness of scalar conservation laws with singular sources, Methods Appl. Anal., 9 (2002), 291-312. |
[38] |
J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains, Numer. Math., 90 (2002), 563-596.
doi: 10.1007/s002110100307. |
show all references
References:
[1] |
D. Amadori, L. Gosse and G. Guerra, Godunov-type approximation for a general resonant balance law with large data, J. Differ. Equ., 198 (2004), 233-274.
doi: 10.1016/j.jde.2003.10.004. |
[2] |
B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numer. Math., 115 (2010), 609-645.
doi: 10.1007/s00211-009-0286-7. |
[3] |
B. Andreianov, K. H. Karlsen and N. H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux, Netw. Heterog. Media, 5 (2010), 617-633. |
[4] |
B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), 27-86.
doi: 10.1007/s00205-010-0389-4. |
[5] |
B. Andreianov, F. Lagoutière, N. Seguin and T. Takahashi, Small solids in an inviscid fluid, Netw. Heter. Media, 5 (2010), 385-404. |
[6] |
B. Andreianov, F. Lagoutière, N. Seguin and T. Takahashi, Well-posedness for a one-dimensional fluid-particle interaction model,, In preparation., ().
|
[7] |
Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions, J. Hyperbolic Differ. Equ., 2 (2005), 783-837.
doi: 10.1142/S0219891605000622. |
[8] |
E. Audusse and B. Perthame, Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253-265. |
[9] |
F. Bachmann, "Équations Hyperboliques Scalaires à Flux Discontinu,'' Ph.D thesis, Université de Provence, France, 2005. |
[10] |
B. Boutin, F. Coquel and E. Godlewski, Dafermos regularization for interface coupling of conservation laws, in "Hyperbolic Problems: Theory, Numerics, Applications,'' Springer, Berlin, (2008), 567-575.
doi: 10.1007/978-3-540-75712-2_55. |
[11] |
R. Bürger, A. García, K. H. Karlsen and J. D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux, J. Engrg. Math., 60 (2008), 387-425. |
[12] |
P. Baiti and H. K. Jenssen, Well-posedness for a class of $2\times2$ conservation laws with $L^\infty$ data, J. Differ. Equ., 140 (1997), 161-185.
doi: 10.1006/jdeq.1997.3308. |
[13] |
R. Bürger, K. H. Karlsen and J. D. Towers, An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal., 47 (2009), 1684-1712. |
[14] |
B. Boutin, "Couplage de Lois de Conservation Scalaires par une Régularisation à la Dafermos,'' Master's thesis, Université Pierre et Marie Curie-Paris 6, 2006. |
[15] |
R. Botchorishvili, B. Perthame and A. Vasseur, Equilibrium schemes for scalar conservation laws with stiff sources, Math. Comp., 72 (2003), 131-157.
doi: 10.1090/S0025-5718-01-01371-0. |
[16] |
R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differ. Equ., 234 (2007), 654-675.
doi: 10.1016/j.jde.2006.10.014. |
[17] |
A. Chinnayya, A.-Y. LeRoux and N. Seguin, A well-balanced numerical scheme for the approximation of the shallow-water equations with topography: The resonance phenomenon, Int. J. Finite Volumes, 1 (2004), 33 pp. |
[18] |
M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. AMS, 78 (1980), 385-390. |
[19] |
R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in "Handbook of Numerical Analysis,'' Vol. VII, North-Holland, Amsterdam, (2000), 713-1020. |
[20] |
L. Gosse and A.-Y. LeRoux, Un schéma-équilibre adapté aux lois de conservation scalaires non-homogènes, C. R. Acad. Sci. Paris Sér. I Math., 323 (1996), 543-546. |
[21] |
J. M. Greenberg and A.-Y. LeRoux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33 (1996), 1-16.
doi: 10.1137/0733001. |
[22] |
P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 881-902. |
[23] |
L. Gosse, Localization effects and measure source terms in numerical schemes for balance laws, Math. Comp., 71 (2002), 553-582.
doi: 10.1090/S0025-5718-01-01354-0. |
[24] |
E. Godlewski and P.-A. Raviart, "Hyperbolic Systems of Conservation Laws,'' Mathématiques & Applications (Paris) [Mathematics and Applications], 3/4, Ellipses, Paris, 1991. |
[25] |
L. Gosse and G. Toscani, Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes, SIAM J. Numer. Anal., 41 (2003), 641-658.
doi: 10.1137/S0036142901399392. |
[26] |
G. Guerra, Well-posedness for a scalar conservation law with singular nonconservative source, J. Differ. Equ., 206 (2004), 438-469.
doi: 10.1016/j.jde.2004.04.008. |
[27] |
E. Isaacson and B. Temple, Convergence of the $2\times 2$ Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math., 55 (1995), 625-640.
doi: 10.1137/S0036139992240711. |
[28] |
S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (123) (1970), 228-255. |
[29] |
A.-Y. LeRoux, Riemann solvers for some hyperbolic problems with a source term, In "Actes du 30ème Congrès d'Analyse Numérique: CANum '98'' (Arles, 1998), ESAIM Proc., 6, Soc. Math. Appl. Indust., Paris, (1999), 75-90. |
[30] |
F. Lagoutière, N. Seguin and T. Takahashi, A simple 1D model of inviscid fluid-solid interaction, J. Differ. Equ., 245 (2008), 3503-3544. |
[31] |
R. J. LeVeque and B. Temple, Stability of Godunov's method for a class of $2\times 2$ systems of conservation laws, Trans. Amer. Math. Soc., 288 (1985), 115-123.
doi: 10.2307/2000429. |
[32] |
P. G. LeFloch and A. E. Tzavaras, Representation of weak limits and definition of nonconservative products, SIAM J. Math. Anal., 30 (1999), 1309-1342.
doi: 10.1137/S0036141098341794. |
[33] |
E. Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., 4 (2007), 729-770.
doi: 10.1142/S0219891607001343. |
[34] |
N. Seguin and J. Vovelle, Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients, Math. Models Methods Appl. Sci., 13 (2003), 221-257.
doi: 10.1142/S0218202503002477. |
[35] |
B. Temple, Global solution of the Cauchy problem for a class of $2\times 2$ nonstrictly hyperbolic conservation laws, Adv. in Appl. Math., 3 (1982), 335-375.
doi: 10.1016/S0196-8858(82)80010-9. |
[36] |
A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 160 (2001), 181-193.
doi: 10.1007/s002050100157. |
[37] |
A. Vasseur, Well-posedness of scalar conservation laws with singular sources, Methods Appl. Anal., 9 (2002), 291-312. |
[38] |
J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains, Numer. Math., 90 (2002), 563-596.
doi: 10.1007/s002110100307. |
[1] |
Fuyi Xu, Meiling Chi, Lishan Liu, Yonghong Wu. On the well-posedness and decay rates of strong solutions to a multi-dimensional non-conservative viscous compressible two-fluid system. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2515-2559. doi: 10.3934/dcds.2020140 |
[2] |
Yogiraj Mantri, Michael Herty, Sebastian Noelle. Well-balanced scheme for gas-flow in pipeline networks. Networks and Heterogeneous Media, 2019, 14 (4) : 659-676. doi: 10.3934/nhm.2019026 |
[3] |
Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001 |
[4] |
François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739 |
[5] |
Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107 |
[6] |
Yuri Trakhinin. On well-posedness of the plasma-vacuum interface problem: the case of non-elliptic interface symbol. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1371-1399. doi: 10.3934/cpaa.2016.15.1371 |
[7] |
Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic and Related Models, 2014, 7 (4) : 713-737. doi: 10.3934/krm.2014.7.713 |
[8] |
Mohamed Alahyane, Abdelilah Hakim, Amine Laghrib, Said Raghay. Fluid image registration using a finite volume scheme of the incompressible Navier Stokes equation. Inverse Problems and Imaging, 2018, 12 (5) : 1055-1081. doi: 10.3934/ipi.2018044 |
[9] |
Tristan Roy. Adapted linear-nonlinear decomposition and global well-posedness for solutions to the defocusing cubic wave equation on $\mathbb{R}^{3}$. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1307-1323. doi: 10.3934/dcds.2009.24.1307 |
[10] |
Hao Wu, Yuchen Yang. Well-posedness of a hydrodynamic phase-field system for functionalized membrane-fluid interaction. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022102 |
[11] |
Laurent Gosse. Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension. Kinetic and Related Models, 2012, 5 (2) : 283-323. doi: 10.3934/krm.2012.5.283 |
[12] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[13] |
Markus Grasmair. Well-posedness and convergence rates for sparse regularization with sublinear $l^q$ penalty term. Inverse Problems and Imaging, 2009, 3 (3) : 383-387. doi: 10.3934/ipi.2009.3.383 |
[14] |
Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781 |
[15] |
Gabriela Marinoschi. Well posedness of a time-difference scheme for a degenerate fast diffusion problem. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 435-454. doi: 10.3934/dcdsb.2010.13.435 |
[16] |
George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417 |
[17] |
Kelin Li, Huafei Di. On the well-posedness and stability for the fourth-order Schrödinger equation with nonlinear derivative term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4293-4320. doi: 10.3934/dcdss.2021122 |
[18] |
Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933 |
[19] |
Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007 |
[20] |
Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]