June  2012, 32(6): 1977-1995. doi: 10.3934/dcds.2012.32.1977

On the higher-dimensional multifractal analysis

1. 

LAGA (UMR 7539), Département de Mathématiques, Institut Galilée, Université Paris 13, Villetaneuse

2. 

Department of Mathematics, Tsinghua University, Beijing

Received  April 2011 Revised  September 2011 Published  February 2012

We achieve the higher-dimensional multifractal analysis for quotients of almost additive potentials on topologically mixing subshifts of finite type without restriction on the regularity of the potentials, nor on the support of the Hausdorff spectrum, for which we do not need to assume that it has a non empty interior.
Citation: Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977
References:
[1]

J. Barral and Y. H. Qu, Localized asymptotic behavior for almost additive potentials, to appear in Discrete Contin. Dyn. Syst.,, \arXiv{1104.1442v1}., ().   Google Scholar

[2]

A. de Acosta, A general non-convex large deviation result with applications to stochastic equations,, Probab. Theory Related Fields, 118 (2000), 483.  doi: 10.1007/PL00008752.  Google Scholar

[3]

L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems,, Ergod. Th. & Dynam. Sys., 16 (1996), 871.   Google Scholar

[4]

L. Barreira, Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures,, Discrete Contin. Dyn. Syst., 16 (2006), 279.  doi: 10.3934/dcds.2006.16.279.  Google Scholar

[5]

L. Barreira and P. Doutor, Almost additive multifractal analysis,, J. Math. Pures Appl. (9), 92 (2009), 1.  doi: 10.1016/j.matpur.2009.04.006.  Google Scholar

[6]

L. Barreira, B. Saussol and J. Schmeling, Higher-dimensional multifractal analysis,, J. Math. Pures Appl. (9), 81 (2002), 67.  doi: 10.1016/S0021-7824(01)01228-4.  Google Scholar

[7]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Lecture Notes in Mathematics, 470 (1975).   Google Scholar

[8]

H. Cajar, "Billingsley Dimension in Probability Spaces,", Lecture Notes in Mathemaitcs, 892 (1981).   Google Scholar

[9]

Y.-L. Cao, D.-J. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials,, Discrete Contin. Dyn. Syst., 20 (2008), 639.   Google Scholar

[10]

K. J. Falconer, A subadditive thermodynamic formalism for mixing repellers,, J. Phys. A, 21 (1988).  doi: 10.1088/0305-4470/21/14/005.  Google Scholar

[11]

A.-H. Fan and D.-J. Feng, On the distribution of long-term time averages on symbolic space,, J. Statist. Phys., 99 (2000), 813.  doi: 10.1023/A:1018643512559.  Google Scholar

[12]

A.-H. Fan, D.-J. Feng and J. Wu, Recurrence, dimension and entropy,, J. London Math. Soc. (2), 64 (2001), 229.  doi: 10.1017/S0024610701002137.  Google Scholar

[13]

D.-J. Feng, The variational principle for products of non-negative matrices,, Nonlinearity, 17 (2004), 447.  doi: 10.1088/0951-7715/17/2/004.  Google Scholar

[14]

D.-J. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials,, Commun. Math. Phys., 297 (2010), 1.  doi: 10.1007/s00220-010-1031-x.  Google Scholar

[15]

D.-J. Feng and K.-S. Lau, The pressure function for products of non-negative matrices,, Math. Res. Lett., 9 (2002), 363.   Google Scholar

[16]

D.-J. Feng, K.-S. Lau and J. Wu, Ergodic limits on the conformal repellers,, Adv. Math., 169 (2002), 58.  doi: 10.1006/aima.2001.2054.  Google Scholar

[17]

D.-J. Feng and E. Olivier, Multifractal analysis of the weak Gibbs measures and phase transition-Application to some Bernoulli convolutions,, Ergod. Th. & Dynam. Sys., 23 (2003), 1751.   Google Scholar

[18]

D. Gatzouras and Y. Peres, Invariant measures of full dimension for some expanding maps,, Ergod. Th. & Dynam. Sys., 17 (1997), 147.   Google Scholar

[19]

A. Mummert, The thermodynamic formalism for almost-additive sequences,, Discrete Contin. Dyn. Syst., 16 (2006), 435.  doi: 10.3934/dcds.2006.16.435.  Google Scholar

[20]

Y. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions,, J. Statist. Phys., 86 (1997), 233.  doi: 10.1007/BF02180206.  Google Scholar

[21]

Y. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: Motivation, Mathematical Foundation, and Examples,, Chaos, 7 (1997), 89.  doi: 10.1063/1.166242.  Google Scholar

[22]

D. A. Rand, The singularity spectrum $f(\alpha)$ for cookie-cutters,, Ergod. Th. & Dynam. Sys., 9 (1989), 527.   Google Scholar

[23]

R. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).   Google Scholar

[24]

D. Ruelle, "Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics,", Encyclopedia of Mathematics and its Applications, 5 (1978).   Google Scholar

[25]

F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets,, Ergod. Th. & Dynam. Sys., 23 (2003), 317.   Google Scholar

show all references

References:
[1]

J. Barral and Y. H. Qu, Localized asymptotic behavior for almost additive potentials, to appear in Discrete Contin. Dyn. Syst.,, \arXiv{1104.1442v1}., ().   Google Scholar

[2]

A. de Acosta, A general non-convex large deviation result with applications to stochastic equations,, Probab. Theory Related Fields, 118 (2000), 483.  doi: 10.1007/PL00008752.  Google Scholar

[3]

L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems,, Ergod. Th. & Dynam. Sys., 16 (1996), 871.   Google Scholar

[4]

L. Barreira, Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures,, Discrete Contin. Dyn. Syst., 16 (2006), 279.  doi: 10.3934/dcds.2006.16.279.  Google Scholar

[5]

L. Barreira and P. Doutor, Almost additive multifractal analysis,, J. Math. Pures Appl. (9), 92 (2009), 1.  doi: 10.1016/j.matpur.2009.04.006.  Google Scholar

[6]

L. Barreira, B. Saussol and J. Schmeling, Higher-dimensional multifractal analysis,, J. Math. Pures Appl. (9), 81 (2002), 67.  doi: 10.1016/S0021-7824(01)01228-4.  Google Scholar

[7]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,", Lecture Notes in Mathematics, 470 (1975).   Google Scholar

[8]

H. Cajar, "Billingsley Dimension in Probability Spaces,", Lecture Notes in Mathemaitcs, 892 (1981).   Google Scholar

[9]

Y.-L. Cao, D.-J. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials,, Discrete Contin. Dyn. Syst., 20 (2008), 639.   Google Scholar

[10]

K. J. Falconer, A subadditive thermodynamic formalism for mixing repellers,, J. Phys. A, 21 (1988).  doi: 10.1088/0305-4470/21/14/005.  Google Scholar

[11]

A.-H. Fan and D.-J. Feng, On the distribution of long-term time averages on symbolic space,, J. Statist. Phys., 99 (2000), 813.  doi: 10.1023/A:1018643512559.  Google Scholar

[12]

A.-H. Fan, D.-J. Feng and J. Wu, Recurrence, dimension and entropy,, J. London Math. Soc. (2), 64 (2001), 229.  doi: 10.1017/S0024610701002137.  Google Scholar

[13]

D.-J. Feng, The variational principle for products of non-negative matrices,, Nonlinearity, 17 (2004), 447.  doi: 10.1088/0951-7715/17/2/004.  Google Scholar

[14]

D.-J. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials,, Commun. Math. Phys., 297 (2010), 1.  doi: 10.1007/s00220-010-1031-x.  Google Scholar

[15]

D.-J. Feng and K.-S. Lau, The pressure function for products of non-negative matrices,, Math. Res. Lett., 9 (2002), 363.   Google Scholar

[16]

D.-J. Feng, K.-S. Lau and J. Wu, Ergodic limits on the conformal repellers,, Adv. Math., 169 (2002), 58.  doi: 10.1006/aima.2001.2054.  Google Scholar

[17]

D.-J. Feng and E. Olivier, Multifractal analysis of the weak Gibbs measures and phase transition-Application to some Bernoulli convolutions,, Ergod. Th. & Dynam. Sys., 23 (2003), 1751.   Google Scholar

[18]

D. Gatzouras and Y. Peres, Invariant measures of full dimension for some expanding maps,, Ergod. Th. & Dynam. Sys., 17 (1997), 147.   Google Scholar

[19]

A. Mummert, The thermodynamic formalism for almost-additive sequences,, Discrete Contin. Dyn. Syst., 16 (2006), 435.  doi: 10.3934/dcds.2006.16.435.  Google Scholar

[20]

Y. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for conformal expanding maps and Moran-like geometric constructions,, J. Statist. Phys., 86 (1997), 233.  doi: 10.1007/BF02180206.  Google Scholar

[21]

Y. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: Motivation, Mathematical Foundation, and Examples,, Chaos, 7 (1997), 89.  doi: 10.1063/1.166242.  Google Scholar

[22]

D. A. Rand, The singularity spectrum $f(\alpha)$ for cookie-cutters,, Ergod. Th. & Dynam. Sys., 9 (1989), 527.   Google Scholar

[23]

R. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).   Google Scholar

[24]

D. Ruelle, "Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics,", Encyclopedia of Mathematics and its Applications, 5 (1978).   Google Scholar

[25]

F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets,, Ergod. Th. & Dynam. Sys., 23 (2003), 317.   Google Scholar

[1]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[2]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[3]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[4]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[5]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[6]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[7]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[8]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[9]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[10]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[11]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A socp relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[12]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]