June  2012, 32(6): 1997-2025. doi: 10.3934/dcds.2012.32.1997

On a phase field model for solid-liquid phase transitions

1. 

Université de Lyon, CNRS UMR 5208 & Université Lyon 1, Institut Camille Jordan, 43 bd du 11 novembre 1918, F-69622 Villeurbanne cedex, France, France

2. 

Université Blaise Pascal & CNRS UMR 6620, Laboratoire de Mathématiques, Campus des Cézeaux, B.P. 80026, F-63177 Aubière cedex, France

3. 

CEA-Grenoble (DEN/DTP/SMTH), 17, rue des martyrs, F-38054 Grenoble cedex 9, France

Received  January 2011 Revised  July 2011 Published  February 2012

A new phase field model is introduced, which can be viewed as a nontrivial generalisation of what is known as the Caginalp model. It involves in particular nonlinear diffusion terms. By formal asymptotic analysis, it is shown that in the sharp interface limit it still yields a Stefan-like model with: 1) a generalized Gibbs-Thomson relation telling how much the interface temperature differs from the equilibrium temperature when the interface is moving or/and is curved with surface tension; 2) a jump condition for the heat flux, which turns out to depend on the latent heat and on the velocity of the interface with a new, nonlinear term compared to standard models. From the PDE analysis point of view, the initial-boundary value problem is proved to be locally well-posed in time (for smooth data).
Citation: Sylvie Benzoni-Gavage, Laurent Chupin, Didier Jamet, Julien Vovelle. On a phase field model for solid-liquid phase transitions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1997-2025. doi: 10.3934/dcds.2012.32.1997
References:
[1]

D. M. Anderson, G. B. McFadden and A. A. Wheeler, Diffuse-interface methods in fluid mechanics,, in, (1998), 139.   Google Scholar

[2]

E. Bonetti, P. Colli, M. Fabrizio and G. Gilardi, Existence and boundedness of solutions for a singular phase field system,, J. Differential Equations, 246 (2009), 3260.   Google Scholar

[3]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.  doi: 10.1007/BF00254827.  Google Scholar

[4]

G. Caginalp and X. Chen, Convergence of the phase field model to its sharp interface limits,, European J. Appl. Math., 9 (1998), 417.  doi: 10.1017/S0956792598003520.  Google Scholar

[5]

C. Cavaterra, C. G. Gal, M. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamic boundary conditions,, Nonlinear Anal., 72 (2010), 2375.  doi: 10.1016/j.na.2009.11.002.  Google Scholar

[6]

P. Colli, D. Hilhorst, F. Issard-Roch and G. Schimperna, Long time convergence for a class of variational phase-field models,, Discrete Contin. Dyn. Syst., 25 (2009), 63.   Google Scholar

[7]

E. Feireisl, H. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements,, Math. Methods Appl. Sci., 32 (2009), 1345.   Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[9]

M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials,, Discrete Contin. Dyn. Syst., 28 (2010), 67.   Google Scholar

[10]

M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential,, Z. Anal. Anwend., 25 (2006), 51.  doi: 10.4171/ZAA/1277.  Google Scholar

[11]

A. Miranville and R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law,, Nonlinear Anal., 71 (2009), 2278.  doi: 10.1016/j.na.2009.01.061.  Google Scholar

[12]

A. Miranville and R. Quintanilla, A Caginalp phase-field system with a nonlinear coupling,, Nonlinear Anal. Real World Appl., 11 (2010), 2849.  doi: 10.1016/j.nonrwa.2009.10.008.  Google Scholar

[13]

Pierre Ruyer, "Modèle de Champ de Phase pour l'Étude de l'Ébullition,", Ph.D thesis, (2006).   Google Scholar

show all references

References:
[1]

D. M. Anderson, G. B. McFadden and A. A. Wheeler, Diffuse-interface methods in fluid mechanics,, in, (1998), 139.   Google Scholar

[2]

E. Bonetti, P. Colli, M. Fabrizio and G. Gilardi, Existence and boundedness of solutions for a singular phase field system,, J. Differential Equations, 246 (2009), 3260.   Google Scholar

[3]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.  doi: 10.1007/BF00254827.  Google Scholar

[4]

G. Caginalp and X. Chen, Convergence of the phase field model to its sharp interface limits,, European J. Appl. Math., 9 (1998), 417.  doi: 10.1017/S0956792598003520.  Google Scholar

[5]

C. Cavaterra, C. G. Gal, M. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamic boundary conditions,, Nonlinear Anal., 72 (2010), 2375.  doi: 10.1016/j.na.2009.11.002.  Google Scholar

[6]

P. Colli, D. Hilhorst, F. Issard-Roch and G. Schimperna, Long time convergence for a class of variational phase-field models,, Discrete Contin. Dyn. Syst., 25 (2009), 63.   Google Scholar

[7]

E. Feireisl, H. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements,, Math. Methods Appl. Sci., 32 (2009), 1345.   Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[9]

M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials,, Discrete Contin. Dyn. Syst., 28 (2010), 67.   Google Scholar

[10]

M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential,, Z. Anal. Anwend., 25 (2006), 51.  doi: 10.4171/ZAA/1277.  Google Scholar

[11]

A. Miranville and R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law,, Nonlinear Anal., 71 (2009), 2278.  doi: 10.1016/j.na.2009.01.061.  Google Scholar

[12]

A. Miranville and R. Quintanilla, A Caginalp phase-field system with a nonlinear coupling,, Nonlinear Anal. Real World Appl., 11 (2010), 2849.  doi: 10.1016/j.nonrwa.2009.10.008.  Google Scholar

[13]

Pierre Ruyer, "Modèle de Champ de Phase pour l'Étude de l'Ébullition,", Ph.D thesis, (2006).   Google Scholar

[1]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[2]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[5]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[6]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[7]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[8]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[9]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[10]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[11]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[12]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[15]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[16]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[17]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[18]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[19]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[20]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (2)

[Back to Top]