June  2012, 32(6): 1997-2025. doi: 10.3934/dcds.2012.32.1997

On a phase field model for solid-liquid phase transitions

1. 

Université de Lyon, CNRS UMR 5208 & Université Lyon 1, Institut Camille Jordan, 43 bd du 11 novembre 1918, F-69622 Villeurbanne cedex, France, France

2. 

Université Blaise Pascal & CNRS UMR 6620, Laboratoire de Mathématiques, Campus des Cézeaux, B.P. 80026, F-63177 Aubière cedex, France

3. 

CEA-Grenoble (DEN/DTP/SMTH), 17, rue des martyrs, F-38054 Grenoble cedex 9, France

Received  January 2011 Revised  July 2011 Published  February 2012

A new phase field model is introduced, which can be viewed as a nontrivial generalisation of what is known as the Caginalp model. It involves in particular nonlinear diffusion terms. By formal asymptotic analysis, it is shown that in the sharp interface limit it still yields a Stefan-like model with: 1) a generalized Gibbs-Thomson relation telling how much the interface temperature differs from the equilibrium temperature when the interface is moving or/and is curved with surface tension; 2) a jump condition for the heat flux, which turns out to depend on the latent heat and on the velocity of the interface with a new, nonlinear term compared to standard models. From the PDE analysis point of view, the initial-boundary value problem is proved to be locally well-posed in time (for smooth data).
Citation: Sylvie Benzoni-Gavage, Laurent Chupin, Didier Jamet, Julien Vovelle. On a phase field model for solid-liquid phase transitions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1997-2025. doi: 10.3934/dcds.2012.32.1997
References:
[1]

D. M. Anderson, G. B. McFadden and A. A. Wheeler, Diffuse-interface methods in fluid mechanics,, in, (1998), 139.   Google Scholar

[2]

E. Bonetti, P. Colli, M. Fabrizio and G. Gilardi, Existence and boundedness of solutions for a singular phase field system,, J. Differential Equations, 246 (2009), 3260.   Google Scholar

[3]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.  doi: 10.1007/BF00254827.  Google Scholar

[4]

G. Caginalp and X. Chen, Convergence of the phase field model to its sharp interface limits,, European J. Appl. Math., 9 (1998), 417.  doi: 10.1017/S0956792598003520.  Google Scholar

[5]

C. Cavaterra, C. G. Gal, M. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamic boundary conditions,, Nonlinear Anal., 72 (2010), 2375.  doi: 10.1016/j.na.2009.11.002.  Google Scholar

[6]

P. Colli, D. Hilhorst, F. Issard-Roch and G. Schimperna, Long time convergence for a class of variational phase-field models,, Discrete Contin. Dyn. Syst., 25 (2009), 63.   Google Scholar

[7]

E. Feireisl, H. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements,, Math. Methods Appl. Sci., 32 (2009), 1345.   Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[9]

M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials,, Discrete Contin. Dyn. Syst., 28 (2010), 67.   Google Scholar

[10]

M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential,, Z. Anal. Anwend., 25 (2006), 51.  doi: 10.4171/ZAA/1277.  Google Scholar

[11]

A. Miranville and R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law,, Nonlinear Anal., 71 (2009), 2278.  doi: 10.1016/j.na.2009.01.061.  Google Scholar

[12]

A. Miranville and R. Quintanilla, A Caginalp phase-field system with a nonlinear coupling,, Nonlinear Anal. Real World Appl., 11 (2010), 2849.  doi: 10.1016/j.nonrwa.2009.10.008.  Google Scholar

[13]

Pierre Ruyer, "Modèle de Champ de Phase pour l'Étude de l'Ébullition,", Ph.D thesis, (2006).   Google Scholar

show all references

References:
[1]

D. M. Anderson, G. B. McFadden and A. A. Wheeler, Diffuse-interface methods in fluid mechanics,, in, (1998), 139.   Google Scholar

[2]

E. Bonetti, P. Colli, M. Fabrizio and G. Gilardi, Existence and boundedness of solutions for a singular phase field system,, J. Differential Equations, 246 (2009), 3260.   Google Scholar

[3]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Rational Mech. Anal., 92 (1986), 205.  doi: 10.1007/BF00254827.  Google Scholar

[4]

G. Caginalp and X. Chen, Convergence of the phase field model to its sharp interface limits,, European J. Appl. Math., 9 (1998), 417.  doi: 10.1017/S0956792598003520.  Google Scholar

[5]

C. Cavaterra, C. G. Gal, M. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamic boundary conditions,, Nonlinear Anal., 72 (2010), 2375.  doi: 10.1016/j.na.2009.11.002.  Google Scholar

[6]

P. Colli, D. Hilhorst, F. Issard-Roch and G. Schimperna, Long time convergence for a class of variational phase-field models,, Discrete Contin. Dyn. Syst., 25 (2009), 63.   Google Scholar

[7]

E. Feireisl, H. Petzeltová and E. Rocca, Existence of solutions to a phase transition model with microscopic movements,, Math. Methods Appl. Sci., 32 (2009), 1345.   Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[9]

M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials,, Discrete Contin. Dyn. Syst., 28 (2010), 67.   Google Scholar

[10]

M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential,, Z. Anal. Anwend., 25 (2006), 51.  doi: 10.4171/ZAA/1277.  Google Scholar

[11]

A. Miranville and R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law,, Nonlinear Anal., 71 (2009), 2278.  doi: 10.1016/j.na.2009.01.061.  Google Scholar

[12]

A. Miranville and R. Quintanilla, A Caginalp phase-field system with a nonlinear coupling,, Nonlinear Anal. Real World Appl., 11 (2010), 2849.  doi: 10.1016/j.nonrwa.2009.10.008.  Google Scholar

[13]

Pierre Ruyer, "Modèle de Champ de Phase pour l'Étude de l'Ébullition,", Ph.D thesis, (2006).   Google Scholar

[1]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[2]

Rebecca McKay, Theodore Kolokolnikov, Paul Muir. Interface oscillations in reaction-diffusion systems above the Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2523-2543. doi: 10.3934/dcdsb.2012.17.2523

[3]

Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic & Related Models, 2019, 12 (5) : 1185-1196. doi: 10.3934/krm.2019045

[4]

Leonid Berlyand, Mykhailo Potomkin, Volodymyr Rybalko. Sharp interface limit in a phase field model of cell motility. Networks & Heterogeneous Media, 2017, 12 (4) : 551-590. doi: 10.3934/nhm.2017023

[5]

Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 1-18. doi: 10.3934/cpaa.2012.11.1

[6]

Eduard Feireisl. On weak solutions to a diffuse interface model of a binary mixture of compressible fluids. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 173-183. doi: 10.3934/dcdss.2016.9.173

[7]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[8]

Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49

[9]

Danielle Hilhorst, Hideki Murakawa. Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks & Heterogeneous Media, 2014, 9 (4) : 669-682. doi: 10.3934/nhm.2014.9.669

[10]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[11]

Alexander Mielke. Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 479-499. doi: 10.3934/dcdss.2013.6.479

[12]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[13]

Zhiting Xu, Yingying Zhao. A reaction-diffusion model of dengue transmission. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2993-3018. doi: 10.3934/dcdsb.2014.19.2993

[14]

Feng-Bin Wang. A periodic reaction-diffusion model with a quiescent stage. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 283-295. doi: 10.3934/dcdsb.2012.17.283

[15]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[16]

Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246

[17]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[18]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[19]

Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure & Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011

[20]

Michela Eleuteri, Elisabetta Rocca, Giulio Schimperna. On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2497-2522. doi: 10.3934/dcds.2015.35.2497

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

[Back to Top]