-
Previous Article
Absolute and delay-dependent stability of equations with a distributed delay
- DCDS Home
- This Issue
-
Next Article
On a phase field model for solid-liquid phase transitions
Density of orbits in laminations and the space of critical portraits
1. | Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294-1170, United States, United States |
2. | Department of Mathematics, Huntingdon College, Montgomery, AL 36106-2114, United States |
Call a lamination with wandering $k$-gons a WT-lamination. Denote the set of cubic critical portraits by $\mathcal{A}_3$. A critical portrait, compatible with a WT-lamination, is called a WT-critical portrait; let $\mathcal{WT}_3$ be the set of all of them. It was recently shown by the authors that cubic WT-laminations exist and cubic WT-critical portraits, defining polynomials with condense orbits of vertices of order three in their dendritic Julia sets, are dense and locally uncountable in $\mathcal{A}_3$ ($D\subset X$ is condense in $X$ if $D$ intersects every subcontinuum of $X$). Here we show that $\mathcal{WT}_3$ is a dense first category subset of $\mathcal{A}_3$, that critical portraits, whose laminations have a condense orbit in the topological Julia set, form a residual subset of $\mathcal{A}_3$, and that the existence of a condense orbit in the Julia set $J$ implies that $J$ is locally connected.
References:
[1] |
B. Bielefeld, Y. Fisher and J. Hubbard, The classification of critically preperiodic polynomials as dynamical systems, Journal AMS, 5 (1992), 721-762. |
[2] |
A. Blokh, C. Curry and L. Oversteegen, Cubic critical portraits and polynomials with wandering gaps, preprint, arXiv:1003.4467, to appear in Erg. Th. and Dyn. Sys. |
[3] |
A. Blokh, C. Curry and L. Oversteegen, Locally connected models for Julia sets, Advances in Mathematics, 226 (2011), 1621-1661. |
[4] |
A. Blokh, R. Fokkink, J. Mayer, L. Oversteegen and E. Tymchatyn, Fixed point theorems for plane continua with applications, preprint, arXiv:1004.0214, to appear in Memoirs of the American Mathematical Society. |
[5] |
A. Blokh and G. Levin, An inequality for laminations, Julia sets and "growing trees'', Erg. Th. and Dyn. Sys., 22 (2002), 63-97. |
[6] |
A. Blokh and L. Oversteegen, Monotone images of Cremer Julia sets, Houston J. Math., 36 (2010), 469-476. |
[7] |
A. Blokh and L. Oversteegen, Wandering gaps for weakly hyperbolic cubic polynomials, in, "Complex Dynamics'' (ed. D. Schleicher), A K Peters, Wellesley, MA, (2009), 139-168. |
[8] |
A. Douady, Descriptions of compact sets in $\bbc$, in, "Topological Methods in Modern Mathematics'' (Stony Brook, NY, 1991) (eds. L. R. Goldberg and A. V. Phillips), Publish or Perish, Houston, TX, (1993), 429-465. |
[9] |
A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes," Part I Publications Mathématiques d'Orsay, 84-2, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984. |
[10] |
A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes," Part II, Publications Mathématiques d'Orsay, 85-4, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985. |
[11] |
Y. Fisher, "The Classification of Critically Preperiodic Polynomials,'' Ph.D thesis, Cornell University, 1989. |
[12] |
L. Goldberg and J. Milnor, Fixed points of polynomial maps. II: Fixed point portraits, Ann. Scient. École Norm. Sup. (4), 26 (1993), 51-98. |
[13] |
J. Kiwi, Wandering orbit portraits, Trans. Amer. Math. Soc., 354 (2002), 1473-1485.
doi: 10.1090/S0002-9947-01-02896-3. |
[14] |
J. Kiwi, $\mathbb R$eal laminations and the topological dynamics of complex polynomials, Advances in Math., 184 (2004), 207-267.
doi: 10.1016/S0001-8708(03)00144-0. |
[15] |
J. Kiwi, Combinatorial continuity in complex polynomial dynamics, Proc. London Math. Soc. (3), 91 (2005), 215-248. |
[16] |
O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc. (3), 99 (2009), 275-296.
doi: 10.1112/plms/pdn055. |
[17] |
G. Levin, On backward stability of holomorphic dynamical systems, Fundamenta Mathematicae, 158 (1998), 97-107. |
[18] |
J. Milnor, "Dynamics in One Complex Variable,'' 3rd edition, Annals of Mathematics Studies, 160, Princeton University Press, Princeton, 2006. |
[19] |
S. B. Nadler, Jr., "Continuum Theory. An Introduction,'' Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992. |
[20] |
R. Pérez-Marco, Fixed points and circle maps, Acta Math., 179 (1997), 243-294. |
[21] |
A. Poirier, Critical portraits for postcritically finite polynomials, Fund. Math., 203 (2009), 107-163.
doi: 10.4064/fm203-2-2. |
[22] |
J. Rogers, Jr., Singularities in the boundaries of local Siegel disks, Erg. Th. and Dyn. Syst., 12 (1992), 803-821. |
[23] |
P. Roesch and Y. Yin, The boundary of bounded polynomial Fatou components, C. R. Math. Acad. Sci. Paris, 346 (2008), 877-880. |
[24] |
W. Thurston, The combinatorics of iterated rational maps, in, "Complex Dynamics'' (ed. D. Schleicher), A K Peters, Wellesley, MA, (2009), 1-108. |
show all references
References:
[1] |
B. Bielefeld, Y. Fisher and J. Hubbard, The classification of critically preperiodic polynomials as dynamical systems, Journal AMS, 5 (1992), 721-762. |
[2] |
A. Blokh, C. Curry and L. Oversteegen, Cubic critical portraits and polynomials with wandering gaps, preprint, arXiv:1003.4467, to appear in Erg. Th. and Dyn. Sys. |
[3] |
A. Blokh, C. Curry and L. Oversteegen, Locally connected models for Julia sets, Advances in Mathematics, 226 (2011), 1621-1661. |
[4] |
A. Blokh, R. Fokkink, J. Mayer, L. Oversteegen and E. Tymchatyn, Fixed point theorems for plane continua with applications, preprint, arXiv:1004.0214, to appear in Memoirs of the American Mathematical Society. |
[5] |
A. Blokh and G. Levin, An inequality for laminations, Julia sets and "growing trees'', Erg. Th. and Dyn. Sys., 22 (2002), 63-97. |
[6] |
A. Blokh and L. Oversteegen, Monotone images of Cremer Julia sets, Houston J. Math., 36 (2010), 469-476. |
[7] |
A. Blokh and L. Oversteegen, Wandering gaps for weakly hyperbolic cubic polynomials, in, "Complex Dynamics'' (ed. D. Schleicher), A K Peters, Wellesley, MA, (2009), 139-168. |
[8] |
A. Douady, Descriptions of compact sets in $\bbc$, in, "Topological Methods in Modern Mathematics'' (Stony Brook, NY, 1991) (eds. L. R. Goldberg and A. V. Phillips), Publish or Perish, Houston, TX, (1993), 429-465. |
[9] |
A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes," Part I Publications Mathématiques d'Orsay, 84-2, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984. |
[10] |
A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes," Part II, Publications Mathématiques d'Orsay, 85-4, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985. |
[11] |
Y. Fisher, "The Classification of Critically Preperiodic Polynomials,'' Ph.D thesis, Cornell University, 1989. |
[12] |
L. Goldberg and J. Milnor, Fixed points of polynomial maps. II: Fixed point portraits, Ann. Scient. École Norm. Sup. (4), 26 (1993), 51-98. |
[13] |
J. Kiwi, Wandering orbit portraits, Trans. Amer. Math. Soc., 354 (2002), 1473-1485.
doi: 10.1090/S0002-9947-01-02896-3. |
[14] |
J. Kiwi, $\mathbb R$eal laminations and the topological dynamics of complex polynomials, Advances in Math., 184 (2004), 207-267.
doi: 10.1016/S0001-8708(03)00144-0. |
[15] |
J. Kiwi, Combinatorial continuity in complex polynomial dynamics, Proc. London Math. Soc. (3), 91 (2005), 215-248. |
[16] |
O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, Proc. Lond. Math. Soc. (3), 99 (2009), 275-296.
doi: 10.1112/plms/pdn055. |
[17] |
G. Levin, On backward stability of holomorphic dynamical systems, Fundamenta Mathematicae, 158 (1998), 97-107. |
[18] |
J. Milnor, "Dynamics in One Complex Variable,'' 3rd edition, Annals of Mathematics Studies, 160, Princeton University Press, Princeton, 2006. |
[19] |
S. B. Nadler, Jr., "Continuum Theory. An Introduction,'' Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992. |
[20] |
R. Pérez-Marco, Fixed points and circle maps, Acta Math., 179 (1997), 243-294. |
[21] |
A. Poirier, Critical portraits for postcritically finite polynomials, Fund. Math., 203 (2009), 107-163.
doi: 10.4064/fm203-2-2. |
[22] |
J. Rogers, Jr., Singularities in the boundaries of local Siegel disks, Erg. Th. and Dyn. Syst., 12 (1992), 803-821. |
[23] |
P. Roesch and Y. Yin, The boundary of bounded polynomial Fatou components, C. R. Math. Acad. Sci. Paris, 346 (2008), 877-880. |
[24] |
W. Thurston, The combinatorics of iterated rational maps, in, "Complex Dynamics'' (ed. D. Schleicher), A K Peters, Wellesley, MA, (2009), 1-108. |
[1] |
Alexander Blokh, Lex Oversteegen, Vladlen Timorin. Non-degenerate locally connected models for plane continua and Julia sets. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5781-5795. doi: 10.3934/dcds.2017251 |
[2] |
Guizhen Cui, Wenjuan Peng, Lei Tan. On the topology of wandering Julia components. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 929-952. doi: 10.3934/dcds.2011.29.929 |
[3] |
Hiroki Sumi. Dynamics of postcritically bounded polynomial semigroups I: Connected components of the Julia sets. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1205-1244. doi: 10.3934/dcds.2011.29.1205 |
[4] |
Yangyou Pan, Yuzhen Bai, Xiang Zhang. Dynamics of locally linearizable complex two dimensional cubic Hamiltonian systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1761-1774. doi: 10.3934/dcdss.2019116 |
[5] |
Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173 |
[6] |
François Berteloot, Tien-Cuong Dinh. The Mandelbrot set is the shadow of a Julia set. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6611-6633. doi: 10.3934/dcds.2020262 |
[7] |
Luke G. Rogers, Alexander Teplyaev. Laplacians on the basilica Julia set. Communications on Pure and Applied Analysis, 2010, 9 (1) : 211-231. doi: 10.3934/cpaa.2010.9.211 |
[8] |
G. Conner, Christopher P. Grant, Mark H. Meilstrup. A Sharkovsky theorem for non-locally connected spaces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3485-3499. doi: 10.3934/dcds.2012.32.3485 |
[9] |
Paul Wright. Differentiability of Hausdorff dimension of the non-wandering set in a planar open billiard. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3993-4014. doi: 10.3934/dcds.2016.36.3993 |
[10] |
Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751 |
[11] |
Nathaniel D. Emerson. Dynamics of polynomials with disconnected Julia sets. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 801-834. doi: 10.3934/dcds.2003.9.801 |
[12] |
Manuel Fernández-Martínez. A real attractor non admitting a connected feasible open set. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 723-725. doi: 10.3934/dcdss.2019046 |
[13] |
Koh Katagata. On a certain kind of polynomials of degree 4 with disconnected Julia set. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 975-987. doi: 10.3934/dcds.2008.20.975 |
[14] |
Volodymyr Nekrashevych. The Julia set of a post-critically finite endomorphism of $\mathbb{PC}^2$. Journal of Modern Dynamics, 2012, 6 (3) : 327-375. doi: 10.3934/jmd.2012.6.327 |
[15] |
Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2583-2589. doi: 10.3934/dcds.2012.32.2583 |
[16] |
Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control and Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35 |
[17] |
Jianghong Bao. Complex dynamics in the segmented disc dynamo. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3301-3314. doi: 10.3934/dcdsb.2016098 |
[18] |
Xu Zhang, Guanrong Chen. Polynomial maps with hidden complex dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2941-2954. doi: 10.3934/dcdsb.2018293 |
[19] |
Guizhen Cui, Yan Gao. Wandering continua for rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1321-1329. doi: 10.3934/dcds.2016.36.1321 |
[20] |
Luiz Felipe Nobili França. Partially hyperbolic sets with a dynamically minimal lamination. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2717-2729. doi: 10.3934/dcds.2018114 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]