June  2012, 32(6): 2027-2039. doi: 10.3934/dcds.2012.32.2027

Density of orbits in laminations and the space of critical portraits

1. 

Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294-1170, United States, United States

2. 

Department of Mathematics, Huntingdon College, Montgomery, AL 36106-2114, United States

Received  April 2011 Revised  November 2011 Published  February 2012

Thurston introduced $\sigma_d$-invariant laminations (where $\sigma_d(z)$ coincides with $z^d:\mathbb{S}\to \mathbb{S}$, $d\ge 2$). He defined wandering $k$-gons as sets $T\subset \mathbb{S}$ such that $\sigma_d^n(T)$ consists of $k\ge 3$ distinct points for all $n\ge 0$ and the convex hulls of all the sets $\sigma_d^n(T)$ in the plane are pairwise disjoint. Thurston proved that $\sigma_2$ has no wandering $k$-gons and posed the problem of their existence for $\sigma_d$, $d\ge 3$.
    Call a lamination with wandering $k$-gons a WT-lamination. Denote the set of cubic critical portraits by $\mathcal{A}_3$. A critical portrait, compatible with a WT-lamination, is called a WT-critical portrait; let $\mathcal{WT}_3$ be the set of all of them. It was recently shown by the authors that cubic WT-laminations exist and cubic WT-critical portraits, defining polynomials with condense orbits of vertices of order three in their dendritic Julia sets, are dense and locally uncountable in $\mathcal{A}_3$ ($D\subset X$ is condense in $X$ if $D$ intersects every subcontinuum of $X$). Here we show that $\mathcal{WT}_3$ is a dense first category subset of $\mathcal{A}_3$, that critical portraits, whose laminations have a condense orbit in the topological Julia set, form a residual subset of $\mathcal{A}_3$, and that the existence of a condense orbit in the Julia set $J$ implies that $J$ is locally connected.
Citation: Alexander Blokh, Clinton Curry, Lex Oversteegen. Density of orbits in laminations and the space of critical portraits. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2027-2039. doi: 10.3934/dcds.2012.32.2027
References:
[1]

B. Bielefeld, Y. Fisher and J. Hubbard, The classification of critically preperiodic polynomials as dynamical systems,, Journal AMS, 5 (1992), 721. Google Scholar

[2]

A. Blokh, C. Curry and L. Oversteegen, Cubic critical portraits and polynomials with wandering gaps,, preprint, (). Google Scholar

[3]

A. Blokh, C. Curry and L. Oversteegen, Locally connected models for Julia sets,, Advances in Mathematics, 226 (2011), 1621. Google Scholar

[4]

A. Blokh, R. Fokkink, J. Mayer, L. Oversteegen and E. Tymchatyn, Fixed point theorems for plane continua with applications,, preprint, (). Google Scholar

[5]

A. Blokh and G. Levin, An inequality for laminations, Julia sets and "growing trees'',, Erg. Th. and Dyn. Sys., 22 (2002), 63. Google Scholar

[6]

A. Blokh and L. Oversteegen, Monotone images of Cremer Julia sets,, Houston J. Math., 36 (2010), 469. Google Scholar

[7]

A. Blokh and L. Oversteegen, Wandering gaps for weakly hyperbolic cubic polynomials,, in, (2009), 139. Google Scholar

[8]

A. Douady, Descriptions of compact sets in $\bbc$,, in, (1993), 429. Google Scholar

[9]

A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes," Part I, Publications Mathématiques d'Orsay, 84-2 (1984), 84. Google Scholar

[10]

A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes," Part II,, Publications Mathématiques d'Orsay, 85-4 (1985), 85. Google Scholar

[11]

Y. Fisher, "The Classification of Critically Preperiodic Polynomials,'', Ph.D thesis, (1989). Google Scholar

[12]

L. Goldberg and J. Milnor, Fixed points of polynomial maps. II: Fixed point portraits,, Ann. Scient. École Norm. Sup. (4), 26 (1993), 51. Google Scholar

[13]

J. Kiwi, Wandering orbit portraits,, Trans. Amer. Math. Soc., 354 (2002), 1473. doi: 10.1090/S0002-9947-01-02896-3. Google Scholar

[14]

J. Kiwi, $\mathbb R$eal laminations and the topological dynamics of complex polynomials,, Advances in Math., 184 (2004), 207. doi: 10.1016/S0001-8708(03)00144-0. Google Scholar

[15]

J. Kiwi, Combinatorial continuity in complex polynomial dynamics,, Proc. London Math. Soc. (3), 91 (2005), 215. Google Scholar

[16]

O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials,, Proc. Lond. Math. Soc. (3), 99 (2009), 275. doi: 10.1112/plms/pdn055. Google Scholar

[17]

G. Levin, On backward stability of holomorphic dynamical systems,, Fundamenta Mathematicae, 158 (1998), 97. Google Scholar

[18]

J. Milnor, "Dynamics in One Complex Variable,'', 3rd edition, 160 (2006). Google Scholar

[19]

S. B. Nadler, Jr., "Continuum Theory. An Introduction,'', Monographs and Textbooks in Pure and Applied Mathematics, 158 (1992). Google Scholar

[20]

R. Pérez-Marco, Fixed points and circle maps,, Acta Math., 179 (1997), 243. Google Scholar

[21]

A. Poirier, Critical portraits for postcritically finite polynomials,, Fund. Math., 203 (2009), 107. doi: 10.4064/fm203-2-2. Google Scholar

[22]

J. Rogers, Jr., Singularities in the boundaries of local Siegel disks,, Erg. Th. and Dyn. Syst., 12 (1992), 803. Google Scholar

[23]

P. Roesch and Y. Yin, The boundary of bounded polynomial Fatou components,, C. R. Math. Acad. Sci. Paris, 346 (2008), 877. Google Scholar

[24]

W. Thurston, The combinatorics of iterated rational maps,, in, (2009), 1. Google Scholar

show all references

References:
[1]

B. Bielefeld, Y. Fisher and J. Hubbard, The classification of critically preperiodic polynomials as dynamical systems,, Journal AMS, 5 (1992), 721. Google Scholar

[2]

A. Blokh, C. Curry and L. Oversteegen, Cubic critical portraits and polynomials with wandering gaps,, preprint, (). Google Scholar

[3]

A. Blokh, C. Curry and L. Oversteegen, Locally connected models for Julia sets,, Advances in Mathematics, 226 (2011), 1621. Google Scholar

[4]

A. Blokh, R. Fokkink, J. Mayer, L. Oversteegen and E. Tymchatyn, Fixed point theorems for plane continua with applications,, preprint, (). Google Scholar

[5]

A. Blokh and G. Levin, An inequality for laminations, Julia sets and "growing trees'',, Erg. Th. and Dyn. Sys., 22 (2002), 63. Google Scholar

[6]

A. Blokh and L. Oversteegen, Monotone images of Cremer Julia sets,, Houston J. Math., 36 (2010), 469. Google Scholar

[7]

A. Blokh and L. Oversteegen, Wandering gaps for weakly hyperbolic cubic polynomials,, in, (2009), 139. Google Scholar

[8]

A. Douady, Descriptions of compact sets in $\bbc$,, in, (1993), 429. Google Scholar

[9]

A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes," Part I, Publications Mathématiques d'Orsay, 84-2 (1984), 84. Google Scholar

[10]

A. Douady and J. H. Hubbard, "Étude Dynamique des Polynômes Complexes," Part II,, Publications Mathématiques d'Orsay, 85-4 (1985), 85. Google Scholar

[11]

Y. Fisher, "The Classification of Critically Preperiodic Polynomials,'', Ph.D thesis, (1989). Google Scholar

[12]

L. Goldberg and J. Milnor, Fixed points of polynomial maps. II: Fixed point portraits,, Ann. Scient. École Norm. Sup. (4), 26 (1993), 51. Google Scholar

[13]

J. Kiwi, Wandering orbit portraits,, Trans. Amer. Math. Soc., 354 (2002), 1473. doi: 10.1090/S0002-9947-01-02896-3. Google Scholar

[14]

J. Kiwi, $\mathbb R$eal laminations and the topological dynamics of complex polynomials,, Advances in Math., 184 (2004), 207. doi: 10.1016/S0001-8708(03)00144-0. Google Scholar

[15]

J. Kiwi, Combinatorial continuity in complex polynomial dynamics,, Proc. London Math. Soc. (3), 91 (2005), 215. Google Scholar

[16]

O. Kozlovski and S. van Strien, Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials,, Proc. Lond. Math. Soc. (3), 99 (2009), 275. doi: 10.1112/plms/pdn055. Google Scholar

[17]

G. Levin, On backward stability of holomorphic dynamical systems,, Fundamenta Mathematicae, 158 (1998), 97. Google Scholar

[18]

J. Milnor, "Dynamics in One Complex Variable,'', 3rd edition, 160 (2006). Google Scholar

[19]

S. B. Nadler, Jr., "Continuum Theory. An Introduction,'', Monographs and Textbooks in Pure and Applied Mathematics, 158 (1992). Google Scholar

[20]

R. Pérez-Marco, Fixed points and circle maps,, Acta Math., 179 (1997), 243. Google Scholar

[21]

A. Poirier, Critical portraits for postcritically finite polynomials,, Fund. Math., 203 (2009), 107. doi: 10.4064/fm203-2-2. Google Scholar

[22]

J. Rogers, Jr., Singularities in the boundaries of local Siegel disks,, Erg. Th. and Dyn. Syst., 12 (1992), 803. Google Scholar

[23]

P. Roesch and Y. Yin, The boundary of bounded polynomial Fatou components,, C. R. Math. Acad. Sci. Paris, 346 (2008), 877. Google Scholar

[24]

W. Thurston, The combinatorics of iterated rational maps,, in, (2009), 1. Google Scholar

[1]

Alexander Blokh, Lex Oversteegen, Vladlen Timorin. Non-degenerate locally connected models for plane continua and Julia sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5781-5795. doi: 10.3934/dcds.2017251

[2]

Guizhen Cui, Wenjuan Peng, Lei Tan. On the topology of wandering Julia components. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 929-952. doi: 10.3934/dcds.2011.29.929

[3]

Hiroki Sumi. Dynamics of postcritically bounded polynomial semigroups I: Connected components of the Julia sets. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1205-1244. doi: 10.3934/dcds.2011.29.1205

[4]

Yangyou Pan, Yuzhen Bai, Xiang Zhang. Dynamics of locally linearizable complex two dimensional cubic Hamiltonian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1761-1774. doi: 10.3934/dcdss.2019116

[5]

Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173

[6]

Luke G. Rogers, Alexander Teplyaev. Laplacians on the basilica Julia set. Communications on Pure & Applied Analysis, 2010, 9 (1) : 211-231. doi: 10.3934/cpaa.2010.9.211

[7]

G. Conner, Christopher P. Grant, Mark H. Meilstrup. A Sharkovsky theorem for non-locally connected spaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3485-3499. doi: 10.3934/dcds.2012.32.3485

[8]

Paul Wright. Differentiability of Hausdorff dimension of the non-wandering set in a planar open billiard. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3993-4014. doi: 10.3934/dcds.2016.36.3993

[9]

Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751

[10]

Nathaniel D. Emerson. Dynamics of polynomials with disconnected Julia sets. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 801-834. doi: 10.3934/dcds.2003.9.801

[11]

Manuel Fernández-Martínez. A real attractor non admitting a connected feasible open set. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 723-725. doi: 10.3934/dcdss.2019046

[12]

Koh Katagata. On a certain kind of polynomials of degree 4 with disconnected Julia set. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 975-987. doi: 10.3934/dcds.2008.20.975

[13]

Volodymyr Nekrashevych. The Julia set of a post-critically finite endomorphism of $\mathbb{PC}^2$. Journal of Modern Dynamics, 2012, 6 (3) : 327-375. doi: 10.3934/jmd.2012.6.327

[14]

Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2583-2589. doi: 10.3934/dcds.2012.32.2583

[15]

Jianghong Bao. Complex dynamics in the segmented disc dynamo. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3301-3314. doi: 10.3934/dcdsb.2016098

[16]

Xu Zhang, Guanrong Chen. Polynomial maps with hidden complex dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2941-2954. doi: 10.3934/dcdsb.2018293

[17]

Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35

[18]

Guizhen Cui, Yan Gao. Wandering continua for rational maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1321-1329. doi: 10.3934/dcds.2016.36.1321

[19]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[20]

Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]