Citation: |
[1] |
H. Amann and J. Escher, "Analysis. II," Grundstudium Mathematik, Birkhäuser Verlag, Basel, 1999.doi: 10.1007/978-3-0348-8972-8. |
[2] |
O. N. Cavatorta and R. D. Tonini, Dimensionless velocity profiles and parameter maps for non-Newtonian fluids, International Communications in Heat and Mass Transfer, 14 (1987), 359-369.doi: 10.1016/0735-1933(87)90057-1. |
[3] |
A. Cianchi, A fully anisotropic Sobolev inequality, Pacific J. Math., 196 (2000), 283-295.doi: 10.2140/pjm.2000.196.283. |
[4] |
A. Cianchi, Optimal Orlicz-Sobolev embeddings, Rev. Mat. Iberoam., 20 (2004), 427-474.doi: 10.4171/RMI/396. |
[5] |
L. Diening, M. Růžička and K. Schumacher, A decomposition technique for John domains, Ann. Acad. Sci. Fenn. Math., 35 (2010), 87-114.doi: 10.5186/aasfm.2010.3506. |
[6] |
H. J. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates, J. Chemical Physics, 4 (1936), 283-291.doi: 10.1063/1.1749836. |
[7] |
M. Fuchs, Korn inequalities in Orlicz spaces, Irish Math. Soc. Bulletin, 65 (2010), 5-9. |
[8] |
M. Fuchs and M. Bildhauer, Compact embeddings of the space of functions with bounded logarithmic deformation, preprint Nr. 276, Universitaet des Saarlandes, 2010. |
[9] |
M. Fuchs and G. Seregin, Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening, Math. Methods Appl. Sci., 22 (1999), 317-351.doi: 10.1002/(SICI)1099-1476(19990310)22:4<317::AID-MMA43>3.0.CO;2-A. |
[10] |
M. Fuchs and G. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Ann. Univ. Sarav. Ser. Math., 10 (1999), iv+283 pp. |
[11] |
P. Gwiazda and A. Świerczewska-Gwiazda, On non-Newtonian fluids with a property of rapid thickening under different stimulus, Math. Models Methods Appl. Sci., 18 (2008), 1073-1092. |
[12] |
P. Gwiazda and A. Świerczewska Gwiazda, Parabolic equations in anisotropic orlicz spaces with general $N$-functions, Parabolic Problems, The Herbert Amann Festschrift, Progress in Nonlinear Differential Equations and Their Applications, 60 (2011), 301-311. |
[13] |
P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci., 33 (2010), 125-137. |
[14] |
J. Hron, C. Le Roux, J. Málek and K. Rajagopal, Flows of incompressible fluids subject to Navier's slip on the boundary, Comput. Math. Appl., 56 (2008), 2128-2143.doi: 10.1016/j.camwa.2008.03.058. |
[15] |
K. Hutter, "Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets," Mathematical Approaches to Geophysics, D. Reidel Publishing Co., Dordrecht, Terra Scientific Publishing Co., Tokyo, 1983. |
[16] |
A. Novotný and I. Straškraba, "Introduction to the Mathematical Theory of Compressible Flow," Oxford Lecture Series in Mathematics and its Applications, 27, Oxford University Press., Oxford, 2004. |
[17] |
M. Patel and M. G. Timol, Numerical treatment of Powell-Eyring fluid flow using method of satisfaction of asymptotic boundary conditions (MSABC), Appl. Numer. Math., 59 (2009), 2584-2592.doi: 10.1016/j.apnum.2009.04.010. |
[18] |
W. Pompe, "Existence Theorems in the Viscoplasticity Theory (Diss.)," Ph.D thesis, Berichte aus der Mathematik, Shaker: Aachen; Darmstadt: TU Darmstadt, Fachbereich Mathematik (Diss.), 2003. |
[19] |
R. E. Powell and H. Eyring, Mechanisms for the relaxation theory of viscosity, Nature, 154 (1994), 427-428.doi: 10.1038/154427a0. |
[20] |
A. M. Robertson, Review of relevant continuum mechanics, in "Hemodynamical Flows," Oberwolfach Semin., 37, Birkhäuser, Basel, (2008), 1-62. |
[21] |
A. M. Robertson, A. Sequeira and M. V. Kameneva, Hemorheology, in "Hemodynamical Flows," Oberwolfach Semin., 37, Birkhäuser, Basel, (2008), 63-120. |
[22] |
R. T. Rockafellar, "Convex Analysis," Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970. |
[23] |
V. Sirohi, M. G. Timol and N. L. Kalthia, Powell-Eyring model flow near an accelerated plate, Fluid Dynamics Research, 2 (1987), 193-204.doi: 10.1016/0169-5983(87)90029-3. |
[24] |
M. S. Skaff, Vector valued Orlicz spaces. II, Pacific J. Math., 28 (1969), 413-430. |
[25] |
M. J. Strauss, Variations of Korn's and Sobolev's inequalities, in "Partial Differential Equations" (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), Amer. Math. Soc., Providence, RI, (1973), 207-214. |
[26] |
R. Temam and G. Strang, Functions of bounded deformation, Arch. Rational Mech. Anal., 75 (1980/81), 7-21. doi: 10.1007/BF00284617. |
[27] |
R. Vodák, The problem $\nabla\cdot$ v$=f$ and singular integrals on Orlicz spaces, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 41 (2002), 161-173. |
[28] |
A. Wróblewska, Steady flow of non-Newtonian fluids-monotonicity methods in generalized Orlicz spaces, Nonlinear Anal., 72 (2010), 4136-4147.doi: 10.1016/j.na.2010.01.045. |
[29] |
H. Yoon and A. Ghajar, A note on the Powell-Eyring fluid model, International Communications in Heat and Mass Transfer, 14 (1987), 381-390.doi: 10.1016/0735-1933(87)90059-5. |