June  2012, 32(6): 2165-2185. doi: 10.3934/dcds.2012.32.2165

Collasping behaviour of a singular diffusion equation

1. 

Institute of Mathematics, Academia sinica, Taiwan

Received  April 2011 Revised  August 2011 Published  February 2012

Let $0\le u_0(x)\in L^1(\mathbb{R}^2)\cap L^{\infty}(\mathbb{R}^2)$ be such that $u_0(x) =u_0(|x|)$ for all $|x|\ge r_1$ and is monotone decreasing for all $|x|\ge r_1$ for some constant $r_1>0$ and $\mbox{ess}\inf_{2{B}_{r_1}(0)}u_0\ge\mbox{ess} \sup_{R^2\setminus B_{r_2}(0)}u_0$ for some constant $r_2>r_1$. Then under some mild decay conditions at infinity on the initial value $u_0$ we will extend the result of P. Daskalopoulos, M.A. del Pino and N. Sesum [4], [6], and prove the collapsing behaviour of the maximal solution of the equation $u_t=\Delta\log u$ in $\mathbb{R}^2\times (0,T)$, $u(x,0)=u_0(x)$ in $\mathbb{R}^2$, near its extinction time $T=\int_{R^2}u_0dx/4\pi$ by a simplified method without using the Hamilton-Yau Harnack inequality.
Citation: Kin Ming Hui. Collasping behaviour of a singular diffusion equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2165-2185. doi: 10.3934/dcds.2012.32.2165
References:
[1]

D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation,, Transactions A. M. S., 280 (1983), 351.   Google Scholar

[2]

P. Daskalopoulos and R. Hamilton, Geometric estimates for the logarithmic fast diffusion equation,, Comm. Anal. Geom., 12 (2004), 143.   Google Scholar

[3]

P. Daskalopoulos and M. A. del Pino, On a singular diffusion equation,, Comm. Anal. Geom., 3 (1995), 523.   Google Scholar

[4]

P. Daskalopoulos and M. A. del Pino, Type II collapsing of maximal solutions to the Ricci flow in $\mathbbR^2$,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 851.   Google Scholar

[5]

P. Daskalopoulos and N. Sesum, Eternal solutions to the Ricci flow on $\mathbbR^2$,, Int. Math. Res. Not., 2006 (8361).   Google Scholar

[6]

P. Daskalopoulos and N. Sesum, Type II extinction profile of maximal solutions to the Ricci flow equation,, J. Geom. Anal., 20 (2010), 565.  doi: 10.1007/s12220-010-9128-1.  Google Scholar

[7]

J. R. Esteban, A. Rodríguez and J. L. Vazquez, The fast diffusion equation with logarithmic nonlinearity and the evolution of conformal metrics in the plane,, Advances in Differential Equations, 1 (1996), 21.   Google Scholar

[8]

J. R. Esteban, A. Rodriguez and J. L. Vazquez, The maximal solution of the logarithmic fast diffusion equation in two space dimensions,, Advances in Differential Equations, 2 (1997), 867.   Google Scholar

[9]

P. G. de Gennes, Wetting: Statics and dynamics,, Rev. Modern Phys., 57 (1985), 827.  doi: 10.1103/RevModPhys.57.827.  Google Scholar

[10]

R. Hamilton and S. T. Yau, The Harnack estimate for the Ricci flow on a surface-revisited,, Asian J. Math., 1 (1997), 418.   Google Scholar

[11]

S. Y. Hsu, Large time behaviour of solutions of the Ricci flow equation on $R^2$,, Pacific J. Math., 197 (2001), 25.  doi: 10.2140/pjm.2001.197.25.  Google Scholar

[12]

S. Y. Hsu, Asymptotic profile of a singular diffusion equation as $t\to\infty$,, Nonlinear Analysis, 48 (2002), 781.  doi: 10.1016/S0362-546X(00)00214-5.  Google Scholar

[13]

S. Y. Hsu, Asymptotic behaviour of solutions of the equation $u_t=\Delta\log u$ near the extinction time,, Advances in Differential Equations, 8 (2003), 161.   Google Scholar

[14]

S. Y. Hsu, Behaviour of solutions of a singular diffusion equation near the extinction time,, Nonlinear Analysis, 56 (2004), 63.  doi: 10.1016/j.na.2003.07.018.  Google Scholar

[15]

K. M. Hui, Existence of solutions of the equation $u_t=\Delta\log u$,, Nonlinear Analysis, 37 (1999), 875.  doi: 10.1016/S0362-546X(98)00081-9.  Google Scholar

[16]

K. M. Hui, Singular limit of solutions of the equation $u_t=\Delta (u^m/m)$ as $m\to 0$,, Pacific J. Math., 187 (1999), 297.  doi: 10.2140/pjm.1999.187.297.  Google Scholar

[17]

J. R. King, Self-similar behaviour for the equation of fast nonlinear diffusion,, Phil. Trans. Royal Soc. London Series A, 343 (1993), 337.  doi: 10.1098/rsta.1993.0052.  Google Scholar

[18]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, "Linear and Quasilinear Equations of Parabolic Type,", Transl. Math. Mono., (1968).   Google Scholar

[19]

J. L. Vazquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type,, J. Math. Pures Appl. (9), 71 (1992), 503.   Google Scholar

[20]

L. F. Wu, A new result for the porous medium equation derived from the Ricci flow,, Bull. Amer. Math. Soc. (N.S.), 28 (1993), 90.   Google Scholar

[21]

L. F. Wu, The Ricci flow on complete $R^2$,, Comm. Anal. Geom., 1 (1993), 439.   Google Scholar

show all references

References:
[1]

D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation,, Transactions A. M. S., 280 (1983), 351.   Google Scholar

[2]

P. Daskalopoulos and R. Hamilton, Geometric estimates for the logarithmic fast diffusion equation,, Comm. Anal. Geom., 12 (2004), 143.   Google Scholar

[3]

P. Daskalopoulos and M. A. del Pino, On a singular diffusion equation,, Comm. Anal. Geom., 3 (1995), 523.   Google Scholar

[4]

P. Daskalopoulos and M. A. del Pino, Type II collapsing of maximal solutions to the Ricci flow in $\mathbbR^2$,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 851.   Google Scholar

[5]

P. Daskalopoulos and N. Sesum, Eternal solutions to the Ricci flow on $\mathbbR^2$,, Int. Math. Res. Not., 2006 (8361).   Google Scholar

[6]

P. Daskalopoulos and N. Sesum, Type II extinction profile of maximal solutions to the Ricci flow equation,, J. Geom. Anal., 20 (2010), 565.  doi: 10.1007/s12220-010-9128-1.  Google Scholar

[7]

J. R. Esteban, A. Rodríguez and J. L. Vazquez, The fast diffusion equation with logarithmic nonlinearity and the evolution of conformal metrics in the plane,, Advances in Differential Equations, 1 (1996), 21.   Google Scholar

[8]

J. R. Esteban, A. Rodriguez and J. L. Vazquez, The maximal solution of the logarithmic fast diffusion equation in two space dimensions,, Advances in Differential Equations, 2 (1997), 867.   Google Scholar

[9]

P. G. de Gennes, Wetting: Statics and dynamics,, Rev. Modern Phys., 57 (1985), 827.  doi: 10.1103/RevModPhys.57.827.  Google Scholar

[10]

R. Hamilton and S. T. Yau, The Harnack estimate for the Ricci flow on a surface-revisited,, Asian J. Math., 1 (1997), 418.   Google Scholar

[11]

S. Y. Hsu, Large time behaviour of solutions of the Ricci flow equation on $R^2$,, Pacific J. Math., 197 (2001), 25.  doi: 10.2140/pjm.2001.197.25.  Google Scholar

[12]

S. Y. Hsu, Asymptotic profile of a singular diffusion equation as $t\to\infty$,, Nonlinear Analysis, 48 (2002), 781.  doi: 10.1016/S0362-546X(00)00214-5.  Google Scholar

[13]

S. Y. Hsu, Asymptotic behaviour of solutions of the equation $u_t=\Delta\log u$ near the extinction time,, Advances in Differential Equations, 8 (2003), 161.   Google Scholar

[14]

S. Y. Hsu, Behaviour of solutions of a singular diffusion equation near the extinction time,, Nonlinear Analysis, 56 (2004), 63.  doi: 10.1016/j.na.2003.07.018.  Google Scholar

[15]

K. M. Hui, Existence of solutions of the equation $u_t=\Delta\log u$,, Nonlinear Analysis, 37 (1999), 875.  doi: 10.1016/S0362-546X(98)00081-9.  Google Scholar

[16]

K. M. Hui, Singular limit of solutions of the equation $u_t=\Delta (u^m/m)$ as $m\to 0$,, Pacific J. Math., 187 (1999), 297.  doi: 10.2140/pjm.1999.187.297.  Google Scholar

[17]

J. R. King, Self-similar behaviour for the equation of fast nonlinear diffusion,, Phil. Trans. Royal Soc. London Series A, 343 (1993), 337.  doi: 10.1098/rsta.1993.0052.  Google Scholar

[18]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, "Linear and Quasilinear Equations of Parabolic Type,", Transl. Math. Mono., (1968).   Google Scholar

[19]

J. L. Vazquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type,, J. Math. Pures Appl. (9), 71 (1992), 503.   Google Scholar

[20]

L. F. Wu, A new result for the porous medium equation derived from the Ricci flow,, Bull. Amer. Math. Soc. (N.S.), 28 (1993), 90.   Google Scholar

[21]

L. F. Wu, The Ricci flow on complete $R^2$,, Comm. Anal. Geom., 1 (1993), 439.   Google Scholar

[1]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[2]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[5]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[6]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[7]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[8]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[9]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[10]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[11]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[12]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[13]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[14]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[15]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[16]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[17]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[18]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[19]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[20]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]