June  2012, 32(6): 2207-2221. doi: 10.3934/dcds.2012.32.2207

On dynamical behavior of viscous Cahn-Hilliard equation

1. 

Department of Mathematics, School of Science, Tianjin University, Tianjin, 300072, China, China

Received  February 2011 Revised  October 2011 Published  February 2012

In this paper, we consider the initial and Dirichlet boundary value problem of the viscous Cahn-Hilliard equation with a general nonlinearity $f$, that is $$ d((1-\alpha)u-\alpha\Delta u)+(\Delta^2u-\Delta f(u))dt= 0, $$where $\alpha\in[0,1]$. Firstly, we establish the existence and continuity results on weak solutions and attractors to this problem. Secondly, we show the $\alpha$-uniform attractiveness of the attractors $A_\alpha$.
Citation: Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207
References:
[1]

N. D. Alikakos, P. W. Bates and G. Fusco, Slow motion for the Cahn-Hilliard equation in one space dimension,, J. Differential Equations, 90 (1991), 81.  doi: 10.1016/0022-0396(91)90163-4.  Google Scholar

[2]

P. Bates and P. Fife, Spectral comparison principles for the Cahn-Hilliard and phase-field equations, and time-scales for coarsening,, Phys. D, 43 (1990), 335.  doi: 10.1016/0167-2789(90)90141-B.  Google Scholar

[3]

F. Bai, C. M. Elliott, A. Gardiner, A. Spence and A. M. Stuart, The viscous Cahn-Hilliard equation. I. Computations,, Nonliearity, 8 (1995), 131.  doi: 10.1088/0951-7715/8/2/002.  Google Scholar

[4]

A. N. Carvalho and T. Dlotko, Dynamics of the viscous Cahn-Hilliard equation,, J. Math. Anal. Appl., 344 (2008), 703.  doi: 10.1016/j.jmaa.2008.03.020.  Google Scholar

[5]

A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy,, Nonlinear Anal., 24 (1995), 1491.  doi: 10.1016/0362-546X(94)00205-V.  Google Scholar

[6]

T. Dlotko, On the Cahn-Hilliard equation with a logarithmic free energy $H^2$ and $H^3$,, J. Differential Equations, 113 (1994), 381.  doi: 10.1006/jdeq.1994.1129.  Google Scholar

[7]

C. M. Elliott and A. M. Stuart, Viscous Cahn-Hilliard equation. II. Analysis,, J. Differeential Equations, 128 (1996), 387.  doi: 10.1006/jdeq.1996.0101.  Google Scholar

[8]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system,, Math. Nachr., 272 (2004), 11.  doi: 10.1002/mana.200310186.  Google Scholar

[9]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, 25 (1988).   Google Scholar

[10]

J. K. Hale and G. Raugel, Lower semicontinuity of attractors of gradient systems and applications,, Ann. Mat. Pura Appl. (4), 154 (1989), 281.  doi: 10.1007/BF01790353.  Google Scholar

[11]

J. K. Hale, X.-B. Lin and G. Raugel, Upper semicontinuity of attractors for approximations of semigroups and partial differential equations,, Math. Comp., 50 (1988), 89.  doi: 10.1090/S0025-5718-1988-0917820-X.  Google Scholar

[12]

J. K. Hale, Dynamics of numerical approximations,, Appl. Math. Comput., 89 (1998), 5.  doi: 10.1016/S0096-3003(97)81644-X.  Google Scholar

[13]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).   Google Scholar

[14]

D. S. Li and P. E. Kloeden, Equi-attraction and the continuous dependence of attractors on parameters,, Glasg. Math. J., 46 (2004), 131.  doi: 10.1017/S0017089503001605.  Google Scholar

[15]

D. S. Li and C. K. Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity,, J. Differential Equations, 149 (1998), 191.  doi: 10.1006/jdeq.1998.3429.  Google Scholar

[16]

D. S. Li and X. X. Zhang, Strongly positively-invariant attractor for periodic processes,, J. Math. Anal. Appl., 241 (2000), 10.  doi: 10.1006/jmaa.1999.6499.  Google Scholar

[17]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions,, Math. Methods Appl. Sci., 28 (2005), 709.  doi: 10.1002/mma.590.  Google Scholar

[18]

B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations,, Comm. Partial Differential Equations, 14 (1989), 245.   Google Scholar

[19]

A. Novick-Cohen, On the viscous Cahn-Hilliard equation,, in, (1988), 329.   Google Scholar

[20]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", 2nd edition, 68 (1997).   Google Scholar

[21]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", Studies in Mathematics and its Applications, (1977).   Google Scholar

show all references

References:
[1]

N. D. Alikakos, P. W. Bates and G. Fusco, Slow motion for the Cahn-Hilliard equation in one space dimension,, J. Differential Equations, 90 (1991), 81.  doi: 10.1016/0022-0396(91)90163-4.  Google Scholar

[2]

P. Bates and P. Fife, Spectral comparison principles for the Cahn-Hilliard and phase-field equations, and time-scales for coarsening,, Phys. D, 43 (1990), 335.  doi: 10.1016/0167-2789(90)90141-B.  Google Scholar

[3]

F. Bai, C. M. Elliott, A. Gardiner, A. Spence and A. M. Stuart, The viscous Cahn-Hilliard equation. I. Computations,, Nonliearity, 8 (1995), 131.  doi: 10.1088/0951-7715/8/2/002.  Google Scholar

[4]

A. N. Carvalho and T. Dlotko, Dynamics of the viscous Cahn-Hilliard equation,, J. Math. Anal. Appl., 344 (2008), 703.  doi: 10.1016/j.jmaa.2008.03.020.  Google Scholar

[5]

A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy,, Nonlinear Anal., 24 (1995), 1491.  doi: 10.1016/0362-546X(94)00205-V.  Google Scholar

[6]

T. Dlotko, On the Cahn-Hilliard equation with a logarithmic free energy $H^2$ and $H^3$,, J. Differential Equations, 113 (1994), 381.  doi: 10.1006/jdeq.1994.1129.  Google Scholar

[7]

C. M. Elliott and A. M. Stuart, Viscous Cahn-Hilliard equation. II. Analysis,, J. Differeential Equations, 128 (1996), 387.  doi: 10.1006/jdeq.1996.0101.  Google Scholar

[8]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system,, Math. Nachr., 272 (2004), 11.  doi: 10.1002/mana.200310186.  Google Scholar

[9]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, 25 (1988).   Google Scholar

[10]

J. K. Hale and G. Raugel, Lower semicontinuity of attractors of gradient systems and applications,, Ann. Mat. Pura Appl. (4), 154 (1989), 281.  doi: 10.1007/BF01790353.  Google Scholar

[11]

J. K. Hale, X.-B. Lin and G. Raugel, Upper semicontinuity of attractors for approximations of semigroups and partial differential equations,, Math. Comp., 50 (1988), 89.  doi: 10.1090/S0025-5718-1988-0917820-X.  Google Scholar

[12]

J. K. Hale, Dynamics of numerical approximations,, Appl. Math. Comput., 89 (1998), 5.  doi: 10.1016/S0096-3003(97)81644-X.  Google Scholar

[13]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).   Google Scholar

[14]

D. S. Li and P. E. Kloeden, Equi-attraction and the continuous dependence of attractors on parameters,, Glasg. Math. J., 46 (2004), 131.  doi: 10.1017/S0017089503001605.  Google Scholar

[15]

D. S. Li and C. K. Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity,, J. Differential Equations, 149 (1998), 191.  doi: 10.1006/jdeq.1998.3429.  Google Scholar

[16]

D. S. Li and X. X. Zhang, Strongly positively-invariant attractor for periodic processes,, J. Math. Anal. Appl., 241 (2000), 10.  doi: 10.1006/jmaa.1999.6499.  Google Scholar

[17]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions,, Math. Methods Appl. Sci., 28 (2005), 709.  doi: 10.1002/mma.590.  Google Scholar

[18]

B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations,, Comm. Partial Differential Equations, 14 (1989), 245.   Google Scholar

[19]

A. Novick-Cohen, On the viscous Cahn-Hilliard equation,, in, (1988), 329.   Google Scholar

[20]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", 2nd edition, 68 (1997).   Google Scholar

[21]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", Studies in Mathematics and its Applications, (1977).   Google Scholar

[1]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[2]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[3]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[4]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[5]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[6]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[7]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[8]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[11]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[12]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[13]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[14]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[15]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[16]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[17]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[18]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[19]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[20]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]